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TIME AVERAGID AREAL MEAN OF PRECIPITATION: ESTIMATION AND NETWORK DESIGN
by
Dr. Rafael L. Bras
Massachusetts Institute of Technology
and
Raul Colen

University of Puerto Rico

ABSTRACT

Rainfall is recognized as a random process in time and space.
wWith this in mind, data collectipn is treated as an estimation problem where
discrete, noisy and incomplete information is used to estimate the true rain-
fall process. The estimation of the unknown time averaged greal mean
of precipitation is carried through a state augmentation procedure and the
use of mulitivariate linear estimation concepts, in particular, the Kalman-
Bucy filter. A technique results which can be used to analvze existing data
networks; design new networks; and process data from existing networiks. The
procedure can handle any network configuration, and explicitly accounts for
the number of stations, their particular location, the duration of observa-

tions and the mecasurcment errors. Results are presented,

INTRODUCTION

Up to the present, the design of hydrologic data collection
networks has been mostly based on minimizing cost, which translates to a
problem of accessibility and maintenance of cobservation stations. Present-
day hydrologlic capabilities, though, demand high levels of accuracy in the

statistics obtained from collected data. ‘turthermore, the scientist must



know the degree of accuracy of used information and its effects on per-
formed calculations. Fortunately, recent advances in probability and
estimation theory provide the tools to systematically analyze the accuracy
of alternative network designs.

The objective of this work was to develep a technique to deter-
mine the accuracy in estimating the time-averaged areal mean of precipita-
tion from a given nctwork configuration. The procedure explicitly considers
the existing trade-off between the number and location of observakions and
the length of record.

The above objective is accomplished by [irsL recognizing that
rainfall is a random process in time and space. Once this fact is estab-
lished, the data collection network analysis is trcated as a problem of
estimation where discrete, noisy and incomplete information is used to
estimate CLhe true rainfall process and the desired statistic. The multi-
variate estimator used is the Kalman—Bucy filter.

The authors are aware of only two previous works analytically
dealing with network design Lo oblain the time—averaged areal mean preci-
pitation. Eagleson 11967] used spectral analysis to arrive at his conclu-
gsions. He transformed the two~dimensicnal rainfall process intce one-
dimensional in order to apply simplified spectral theory. His results
provided a measure of accuracy as a function of the number of stations,
numhber of years of record, size of area of intercst, and rainfall correla-
tion radius. Rodriguez and Mejia 119741 worked on the time domain and
obtained the mean square error of estimation, again as a function of the
number of stations, area, length of record, and correlation ccefficient.

Station location was not considered in any of the works. Rodriguez and
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Mejfa provided solutions under assuwmptions of random and stratified random
sanpling.

Recently, Bras and Rodriguez [1976a, 1976b] presented a
methodology for designing rainfall data collection networks for obtaining
the areal mean of an event and for minimizing discharge prediction error
from runcff models. 'The presented techniques considered not only the
number of statiens, but their location and possible observation errors.

The reader i1s referred to the above two references [or complete literature
roeview of the network design problem and for an introduction to the tech-

niques used in this work.

PROBLEM FORMULATION

The geoal is to estimate the areal rainfall averaged in time.
For example, the user may want to find the yearly areal mean rainfall for

the purpose of yield studies. The desired statistic is detfined as:

rJ
I

|_I

|_I

=
==

Bt

bl

T »oo t

' J £(x, t) dx (L)
1 A

where £(x, t) rainfall accumulation at point with coordinates vector

x and during period t, i,e., one ycar

A = arca

T

number of observed time periods.

Notice that total rainfall accumulation at different time
periods may be correlated.

Rodriguez and Mejfa [1974] proved that for a statiomary process
in space and time P (Equation 1) has zero variance, therefore P is a

constant. Define the total rainfall accumulation, at any peint in time



and space as
f(gi, t) = P + s(gi, t) (2)

where P is the mean areal time average, of the process, as defined in
Equation 1, and E(Ei, t) is a deviation from the mean at the point with
coordinate vector X, and time t. The mean of E(gi, t) is zero.
Discretizing at N points in space, delfine a weclor
f(xl, t)

f(t) = = 1P+ ¢(t) (3)

.- e

f(XNs t)

where 1 = Nxl column vector with elements equal to 1.
E(xl’ t)

elt) =
e(xgs t)
In their work, Rodrigucz and Mejia argued thal the covariance

[unction of the process f(x, t) could be adequately represented by a

general separable form:

. ) T -
E[S(Ela tl) €(§2: t2)] =0 p| | r(x) {4
where T = t2 - tl
X IEQ - _1|

Il

distance between points 2 and 1

¥r{*) = spatial covariance function
p = lag one correlation coefficient
2 .
o = peint variance



The above equation, together with Equation 3, implies a homo-

geneous and isotropic process in space as well as stationary in time.

The form of Equation 4 leads to a stationary multivariate auto—

regressive process of the form,

where

f(t) = 1P+ A{f(t-1) - 1 P} + B W(t)
= 1P+ Aeg(t-1) + B W)
= [I~A]1P+ATIf(t~-1)+ B W(t) (5)
I = identity matrix
A = NxN matrix
B = NxN matrix
W(t) = Nx1 vector of random variables
T 1 tl = t2
EW(c) W (£)] =
G £ # t,

Parameters A and B of Equation 5 are given by

-1
A= S21 511
(8)

T _ -1
BBS = 5,059 S11 512
521 = NxN matrix

= Uzp{r(x - x.)} v
=] —i jsi

S, = Uz{r(x -~ x,)3}

11 i i Vi,1

NxN matrix
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12 21

22 11

For the unique form of Equation 4, which suggests separability

in time and space
P 0
A T,
0 P

The methodology is not limited to this type of separable covariance
function. Nevertheless, whatever the covariance function, the autoregres-
sive model given by Equation 5 must be a good represcntation to maintain the
validity of the following development,

The spatial covariance function, r(+)}, can take many different
forms, the most common being Bessel or exponentisl variations.

The reader is referred to Bras and Rodriguez [1976c] for a more
extensive discussion of the forms of r(+).

A network of rainfall gages at N points in space can he represented

(see Bras and Rodriguez, 1976a, bL) as,

Z(t) = H £{t) + v(t) (7)

where Z{t) Nxl vector of observations at time t

f{t)

Nxl state vector of rainfall at time t as given by Equation 5

Vi)

Nx1 vector of measurement error



R £, =t

E[V(e )V (£)] =

R = error covariance matrix, assumed of diagonal form in this
work. This is a simplifying assumption, not a limiting one.
E[v{(t)] = ©

H = NxN matrix defining the raingage network.

In this work, H is an identity matrix, because observations are
being made at all N points where the state vector 1s defined. Also, rain-
gages are assumed to measure rainfall directly, with no losses. Values of
the elements of H less or greater than 1 could be used to account for
persistent under or over—estimation of rainfall by any given gage.

Equation 7 defines observations of the state vector f£(t) which
is composed of two components, P and g£{t). Represent the constancy of P

by a "no dynamics" equation
P(t + 1) = P(t) (8}

Combining 5 and 8 results in an augmented state-space formula-

tion

£(t) - 1 P(t) A . 0] [f(e=1)-1P(-1) B
= SR N O N IR T G D)
P(t) 0 E 1 P(t — 1) 0

(9)

or

£Fr(t) = A" £'(t = 1) + B' W(t) (103



where f'(t) (8 + 1) x 1 new state vectoer

£(t) = 1 P(t) £(t)

P(t) _ P(t)

A= N+ 1) x (N + 1) matrix
B" = (W+ 1) x (N + 1) matrix

Equation 7 can be transformed to cbservations on the new state

vector £'(t) as:

e(t)
Z=HII I 1] ... + V()
P{L)
= H' £'(t) + Vv{t) (1)

where I NxN identity matrix

1 = Nx1 column vector of 1's

The linear system of equations 10 and 11 can be studied under a
Kalman-Bucy filter formulation [Schweppe, 1973] to obtain linear estimates
of the state vector f'(t) given observations Z(t). Furthermore, the linear
solution yields the mean square error of estimating f'(t)} which will,
therefore, provide the error of estimating P for a given network, in terms
of number and location of observations, and a given number of time periods.

The Kalman filter formulation is:

e(r/t)
£ e/e) = |....n. = ATE'(e-1/t-1) + K(e){z(r) - H'A'E (e-1/e-1))

P(t/t) (12)



R(t) = ] (t/t) B'T RT (12b)

T 7,7t
1'T{R + H')(£/t-1) H''}  H'j(t/t-1) (12¢)

Tee/t) = Y(t/e-1) - T(t/t-1) 1

T(t/e-1) = A" J(e-1/t-1) A’ + B' B'" (12d)

where %'(t/t)

estimate of state vector f£'(t) given observations up

to time t

K(t)

Tt/

N+ 1) x (N+ 1) (in this case) gain matrix

E[{E'(t) - £'(e/t) HE(£) - £'(e/e)}]

[

= mean square error of estimation matrix at time t given

observations up to time t.

Notlice that the mean gquare error of estimation matrix, Z(t/t)
is net a function of the observations Z(t). You can, therefore, have an
a priori measure of the accuracy of the data collection network. By
definition (see Equation 12}, the bottom diagonal value of E(t/t)
corresponds to the mean square error of estimating the long-term areal
average of the rainfall process with a given number of stations N, at
particular locations, and for t observations,

The solution of Equation 12 requires the definition of initial
conditions t'(0/0) and ) (0/0).

In this particular case, it may be argued that there is no
initial knowledge of the last element, P, in the state wvector. In
Bayesian jargon, only '"diffuse prior" information on P is available.

Fortunately, there is prior information on e(t), it has mean 0 and
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covariance walkrix given by Eguakion 4. This information is inhereant in
the parameters A and B of the autoregressive medel.

1t is useful to discuss further the implications of the above
statements. Assume absolutely no information on g(t) and P, that is the
complete state vector, of dimensions N + 1, is unknown. Theoretically

then the prior covariance matrix is given by

7(0/0) = I (13)

The above implies,
-1
L (/o) =0 (14)

which in the limit results in (see Schweppe, 1973),

-1
Yo/ = T R ET (15)

The above equatien is singular for cases where the dimensions of
the observations, 7, arc less than the dimensions of the state wvector.
This singularity will prevent the inversion of Lquation 15 and make
impossible the solution of LIquation 12.

In the hypothetical case of complete diffuse information on the
state vector £'{(t), thc above will be the situation. The state vector
has dimensions N + 1 and only N observations are avaliable at any given
time. TFor the case of no time and space correlations, the system will
be undetermined at all time steps and will, Lherefeore, have ne unique
gsolution. In the case of finite time and spacc correlations, the state
dynamics equation will provide additional information. As such, the

system will become determined after a given number of cbservations
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(function of the extenk of correlation), when enough knowledge is
available to account for the extra degree of freedom.

As previously menticned, the problem at hand has completely
diffuse information on T and knowledge of £(t). Equations 12 could be
rederived to obtain the diffuse prior, or Fisher model, estimator
[Schweppe, 1973]. The solution is insured since at any one time there
are more chservations than completely unknown variables, except for the
case when N = 1 and t = 1,

Instead of rederiving Equations 12, X(O/O) can be assumed to be
a very large diagonal matrix. Z(O/O) is chosen as large as necessary to
make the solutions of Equation 12, at a desired time, t, insensilive to the
inicial condition. The above procedure was chosen for a) simplicity,

b) preference in the form and gencral acceptance of Equatioq 12, ¢} insight
into the system behavior inherent in the use of a large Z(D/O), and

d) generality of Lquation 12 for the case where some prior knowledge is
available (i.e., an operaling network).

In data collection network design and analysis, clearly an
initial estimate of the state vector, %'(OIO), is not required. Interest
lies exclusively in the accuracy measure Z(O/O)- Equations 12 can never-
theless be alsc used in an operating [ramework, given an existing network
and correspending observations. In that case, the goal is to obtain
estimates of the rainfall accumulation during any time period at the rain-
gage locations as well as an updated estimate of the long Lerm areal mean.
Lquations 12 are applicable in such an vperating framework. A valuc of
£'(0/0) must then be given with a corrcsponding ) (0/0) which is proportional

to the users confidence on the selected ?'(0/0)-
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UXAMPLES AND KESULTS

The technique developed in the previous section can be used for
network design purposes, analysis of exislLing networks. or estimation of
rainfall Lotals and long term areal mean precipitation based on filtered
noisy observations. The formulation allows observations at any given
location, this is not a random sampling technique, and explicitly
considers measurement or instrument crror.

Duc to the generality of the formulation, the following example
is necessarily limited. 1In order to present results comparable te
Rodriguez and Mejia [1974], network analysis was performed on a series of
uniformly spaced configurations of stations over square areas. The
number of stalions used ranged from 2 to 32,

For brevity, only results using a spatial covariance fumction
r(~) (seec Equation 4), of the single exponential type are presented.

Following Hodriguez and Mejia's example on a region of central
Venezuela, a point variance of 0.05344 m2 (5.44 x 10Z+ mmE) was used.
Instrument error variances (values of the diagonal matrix R} were kept

an order of magnitude less than the point varilance, taking values of

0.005.

The initial mean square error matrix E(O!O) was chosen to be of
the form 50 I. This is 3 orders of magnitude larger than the point
variance. The above form of Z(U/D) was selected after studying the
effect of wvarious initial conditions. Table | shows some of the results
of such experiments. The tahle gives the mean square error of estimat-

ing the long term areal mean value (given by the lower diagonal of



Table 1

TESTS ON EFFECTS QOF INITIAL MEAN SQUARE ERRCR MATRIX FORM

A = 4100 ka a = 0.0156 Aaz =1 g = 0.25
Z{0/0) = 100 1 r(0/0) = 50 1

t =1

N M.S.E. M.S5.E.
2 3.071 1.556
& 1.573 0. 804
6 1.065 0.549
8 0.808 0.421
t =2

N M.S.E. M.S.E.
2 0.076 0.074
4 0.062 0.059
6 0.057 0.054
8 0.054 0.051
t =3

N M.5.E. M.S8.LE.
2 0.038 0.037
4 0.031 0.031
6 0.029 0.028
8 0.028 0.027
t =4

N M.5.E. M.5.E.
2 0.025 0.025
4 0.021 0.021
6 0.019 0.019
8 0.019 0.018
L =235

N M.5.E. M.5.E,
2 0.019 0.019
4 0.016 0.01e
) 0.015 0.014
8 0.014 0.014
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Table 1 {Continued)

TESTS ON EFFECTS OF INITIAL MEAN SQUARE ERROR MATRIX FORM

A = 40000 km® & = 0.0156 Act % 9.7 o = 0.25
£(0/0) = 100 T 7(0/0) = 50 T £(0/0) = 25 I £C0/0) = 5 T
t =1

N M.5.E. M.S.E. M.S.E. M.S5.E.
’ 3.062 1.546 0.789 0.183
4 1.559 0.785 0.405 0.097
6 1.049 0.533 0.276 0.069
8 0.791 0.404 0.211 0.055
£ =2

N M.5.E. M.S.E. M.S.E. M.S.E.
2 0.058 0.057 0,053 0.047
4 0.037 0.036 0.034 0.027
6 0.031 0.030 0.029 0.022
3 0.028 0.027 0.026 0.019
E o= 3

N M.S5.E. M.5.E, M.5.LE, M.S.E.
z 0,029 0.029 0.028 0.025
4 0.018 0.018 0.018 0.015
6 0.016 0.015 0.015 0.013
g 0.014 0.014 0.014 0.012
—_—

N M.5.E. M.S.E. M.3.F. M.5.E,
2 0.019 0.019 0.019 0.018
4 0.012 0.012 0.012 0.011
6 0.010 0.010 0.010 0.009
8 0.010 0,009 0.009 0.008
L =5

N M.5.E. M.S5.E. M.5.E. M.S.E.
2 0.014 0.014 0.014 0.013
4 0.009 0.009 0.009 0.008
6 0.008 0.008 0.008 0.007
8 0.007 0.007 0.007 0.006
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Z(t/t) in Equatiom 12} as a function of N, the number of stations
(uniformly distributed), and the number of time samples, t, for different
values of }(0/0).

The spatial covariance function used was of the single exponential
type with parameter ¢ = 0.0156 which corresponds to that used in Central
Venezuela by Rodriguez and Mejia. Two square areas, 4100 sz and 40,000
sz were used yielding non-dimensional area parameters, Aaz, of 1 and
9.7, respectively.

As the table shows, at time step 3, results are already fairly
insensitive to initial conditions. Only when Z(O/O) = 5 T does the ef-
fect of initial conditions persist up to & = 5 after which it disappears.
The selection of X(O/O) = 50 T insures satisfactory representation of our
diffuse prior knowledge and at the same time yields results fairly insen—
sitive to initial conditions at t = 3, which is acceptable to our needs.
Diffuse knowledge of E(t} was not required since, in fact, prior know-
ledge of this part of the state vector is available. The mechanics of
the filter "learns" this fact very fast, irrelevant of the size of the
Prior variance used.

The use of a finite Z(OIO) can also be justified by arguing that
the hydrologist can certainly establish a range for the expected values
of precipitation and its mean.

Rodriguez and Mejia [1974] and Bras and Rodriguez [1976al prove
that for random sampling, stratified random sampling and uniformly
distributed systematic sampling, the mean square error of estimation is
only a function of the non-dimensional area Aaz and not of the area, A,
and the spatial correlation parameter, o, individually.

The examples of this work are uniformly distributed networks so



-16-

the results are given in terms of values of Aaz equal to 0.01, 0.1, 1.0,
10.0, 100.0, 1000.0 and 10000.0. The reader 1is cautioned that for the
-general case of any network distribution, the solution must be cbtained
for individual wvalues of A and a.

The lag 1 correlation factor, p, took values of 0.0, 0.25 and
0.50. Results are presented in Tables 2 through 10 based on a point
variance of 0.0544 m2. A complete set of tables is available on microfilm.

Figures 1 to 9 show other results normalized hy dividing
the Mean Square Error by the point variance of the example, 0.0544 mz.
This makes them comparable to Rodriguez and Mejia's [1974] results. The
reader can corrcborate that beth methodologies give similar results but
keep in mind that the problems are slightly different. Im their work,
Rodriguez and Mejia dealt with random and stratified random sampling
with no measurement error. This work investigates non-random sampling
networks with allowance for measurement error.

The plots of figures 10 through 14 show the mean square error
of estimating long term areal mean precipitation as it varies with time
{duration of sampling) and number of uniformly spaced statiocns for
different areas. TFigures 10 to 14 attempt to explicitly show the
trade-off between duration of sampling (time) and number of sampling
stations (space) with curves of constant mean square error.

The tables and figures are self-explanatory. It is clear that
mean square estimation error goes down as the number of stations and
gampling duration increase. (Other figures available on microfilm.)

The estimation error alse decreases as the area increases for a
fixed sampling duration with a given number of stations. This behavior

is not necessarily obvious. Particularly, it is oppesite to the



Time

10
11
112
13
14
15
16
17
18
19

20

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Ao? = 0.1, p = 0.0

.0529
.0204
.0176
L0132
. 0106
.0088
.0076
L0066
. 0059
L0053
. 0048
L0044
.0041
.0038
.0035
.0033
L0031
.0029
.0028

L0026

. 0489
.0245
.0163
L0122
. 0098
.0082
.0070
.0061
L0054
.0049
L0044
L0041
.0038
.0035
.0033
L0031
.0029
L0027
.0026

L0024

Table 2

Number of Stations

3

Q472
.0236
L0157
.0118
L0094
L0079
L0067
. 0059
;0052
L0047
.0043
. 0039
.0036
L0034
.0031
.0030
.0028
.0026
L0025

L0024

16

L0455
.0228
L0152
L0114
L0091
0076
. 0065
. 0057
.0051
.0046
.0041
. 0038
.0035
.0033
.0030
.00238
.0027
.0025
L0024

L0023

28

L0448
L0224
. 0149
.0112
. 0090
L0075
.0064
L0056
.0050
.0045
L0041
. 0037
.0034
.0032
.0030
.0028
. 0026
.0025
L0024

L0022

32

. 04406

.0223

L0149

L0112

.0090

L0074

. 0064

. 0056

.0050

.0045

.0041

. 0037

.0034

.0032

.0030

.0028

.0026

.0025

L0024

. 0022
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Table 3

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Ax?® = 100, p = 0.0

Number of Stations

Time 2 4 8 16 28 32
1 .0299 .0150 .0084 L0048 L0037 .0038
2 . 0150 L0075 0042 L0024 ,0018 .00138
3 . 0160 .0050 .0028 .0016 .0012 .0012
4 .0075 .0038 .0021 .0012 . 0008 .0009
5 . 0060 .0030 L0017 .0010 .0007 . 0007
6 .0050 .0025 .0014 . 0008 . 0006 . 0006
7 .0043 L0021 .0012 .0007 L0005 .0005
8 . 0037 L0018 . 0010 . 00006 .0005 L0004
9 .0033 .0017 .0009 .0005 .0004 . 0004

10 .0030 L0015 . 0008 .0005 . 0004 . 0004

11 L0027 L0014 .0008 .0004 .0003 .0003

12 L0025 .0013 . 0007 . 0004 .0003 .0003

13 .0023 .0012 . 0006 . 0004 .0003 .0003

14 .0021 .0011 . 0006 .0003 .0003 .0003

15 .0020 .00610 .0006 . 0003 L0002 .0002

16 L0019 .0009 .0005 .0003 . 0002 .0002

17 .00138 .0009 . 0005 .0003 .0002 .0002

138 .0017 .0008 . 0005 .0003 .0002 L0002

19 L0016 .0oos .0004 .000G3 L0002 . 0002

20 .0015 . G008 . 0004 . 0002 .0002 .0002



Time

10

11

12

13

14

13

16

17

18

19

20

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Aa’® = 10000, p = 0.0

0297

.0148

. 0099

Q074

. 0059

.0050

.0042

.0037

.0033

.0030

.0027

.0025

.0023

0021

.0620

.0019

.0017

.0017

.0016

.0015

L0148

L0074

.0050

L0037

.0030

.0025

.0021

.0019

.0017

.0015

.0014

.0012

.0011

.0011

.0010

.0009

L0009

. 0008

. 0008

. 0007

Table 4

Number of Stations

8

L0074
. 0037
. 0025
L0019
.0015
.0012
L0011
.0010
.0008
.0007
. 0007
. 0006
.0006
.0005
. 0005
. 0005
.0004
. 0004
. 0004

. 0004

16

L0037
.0015
.0012
. 0009
.0007
.0006
L0005
0005
. 0004
.0004
.0003
.0003
.0003
.0003
.0002
. 0002
. 0002
.0002
.0002

0002

28

.0021
.0011
.0007
.0005
. 0004
.0004
.0003
.0003
.0002
.0002
.0002
.0002
. 0002
.0002
.0001
.0001
. 0001
.0001
.0001

. 0001

32

L0019

.0009

.0006

. 0005

. 0004

. 0003

.0003

.0002

L0002

.0002

.0002

.0002

.0001

.0001

.0001

.0001

.0001

.0001

L0001

.0001

-19-



Time

10

11

12

13

14

15

16

17

18

19

20

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Aa? = 0.10, p = 0.25

1.5619

. 0839

.0426

.0286

.0215

L0172

.0143

.0123

.0108

. 0096

. 0086

.0078

L0072

.0066

L0062

.0058

. 0054

. 0051

.0048

. 0045

Number of Stations

4

.8139

.0743

.0387

L0262

.0198

0159

.0133

.0114

. 0100

. 0089

.0080

0073

.0067

L0062

.0057

.0054

., 0050

L0047

L0045

L0042

Table 5

3

L4316

.0607

.0360

.0246

L0187

0151

L0127

.0108

. 00986

.0085

.0077

.0070

L0064

0039

. 0055

.0051

.0048

L0045

L0043

L0041

1o

.2381

L0577

L0327

.0228

L0175

L0142

.0120

.0103

.0091

.0081

.0073

. 0067

.0061

L0057

.0053

.0049

L0046

L0044

L0041

.0039

28

.1548
0504
.0300
.0214
.0166
10135
.0115
.0099
.0088
70078
.0071
.Q065
.0059
L0055
.0051
-~ 0048
. 0045
L0042
.0040

.0038
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32

L1409

L0487

L0294

.0210

L0164

L0134

.0113

.0098

.0087

.0078

L0070

. 0064

.0059

L0055

L0051

.0048

.0045

L0042

. 0040

.0038
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Table &

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVLERAGH
OF PRECIPITATION TOR Ao’ = 100, p = 0.25

Number of Statiens

Time 2 4 8 16 238 32
1 1.5416 .7830 L3954 .1991 L1149 .1009
2 L0487 L0245 .0136 .0078 L0059 L0057
3 L0242 .0122 L0068 . 0039 L0030 .0029
4 L0161 L0081 .0045 .0026 .0020 .0019
5 L0121 .0061 L0034 .0020 .0015 L0015
6 . 0097 L0049 L0027 .0016 L0012 L0012
7 . 0080 . Q040 .0023 .0013 L0010 .0010
8 L0069 .0035 - .0019 L0011 ., 0009 0008
9 .0060 .0030 L0017 L3010 L0608 .0007

10 .0054 L0027 .0015 .0009 .0007 .0007

11 L0048 L0024 L0014 L0008 .0006& .Q006

12 L0044 L0022 0012 -0007 L0006 . 0005

13 . 0040 L0020 .0011 . 0007 .Q005 .Q005

14 .0037 - .0019 .0010 .000a . 0005 .Q005

15 L0034 NN .0010 .0006 L0004 L0004

16 L0032 .0016 .0009 .0005 L0004 -0004

17 .0030 L0015 .0008 . 0005 L0004 .0004

18 .0028 L0014 . 0008 . 0005 L0004 L0003

19 L0027 L0013 . 0008 L0004 .0003 L0003

20 L0025 .0013 . 0007 0004 .00a3 .0003
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Table 7

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERACE
OF PRECIPITATION FOR Aq? = 10000, p = 0.25

Number of Staticns

Time 2 4 8 16 28 32
1 1.5415 .7828 3945 .1980 L1134 .0992
2 L0484 .0242 L0121 L0061 .0035 .0030
3 0241 . 0120 . 0060 - .0030 L0017 .0015
4 .0160 . 0080 . 0040 . 0020 L0011 .0010
5 .0120 .0060 .0030 .0015 .0009 .0008
6 L0096 L0048 .0024 -0012 .0007 . 0006
7 .0080 .0040 .0020 .0010 ;0006 . 0005
8 .0068 .0034 L0017 .0003 .0005 . 0004
9 . 0060 .0030 .0015 . 0007 L0004 L0004

10 .0053 .0027 .C013 . 0007 L0004 .0003

11 .0048 L0024 L0012 .0006 .0003 .0003

12 .0044 .0022 .0011 -0005 .0003 .0003

13 .0040 .0020 L0010 . 0005 . 0003 .0002

14 .0037 .0018 .0009 L0005 .0003 .0002

15 L0034 .0017 . 00089 L0004 L0002 .0002

16 .0032 .0016 . 0008 .0004 .0002 . 0002

17 . 0030 L0015 . 0007 L0004 . 0002 . 0002

18 .0028 L00L4 .0007 . 0004 .0002 .0002

19 .0027 .0013 L0007 .0003 . 0002 . 0002

20 L0025 .0013 .0006 .0003 . 0002 .0002
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Table §

Number of Stations

Time 2 4 8 16 28 32
1 5.5874 2,9739 1.5489 . 8034 JA4T69 L4220
2 L1590 1421 L1311 L1178 .1055 L1023
3 .0782 L0716 L0677 L0630 .0589 .0578
4 .0519 L0479 L0456 . 0429 . 0408 .0402
5 .0388 .0359 L0344 .0326 .0312 .0308
6 .0310 .0288 .0276 .0262 .0253 .0250
7 .0258 .0240 .0230 L0220 .0212 .0210
8 L0221 .0206 .0198 .0189 .0183 0182
9 .0193 .0180 .0173 L0166 .0161 .0160
10 L0172 .0160 L0154 L0147 .0143 .0142
11 L0154 144 .0139 .0133 L0129 L0129
12 0140 .0131 .0126 .0121 .0118 L0117
13 L0129 .0120 L0116 L0111 .0108 .0103
14 .0119 .0111 .0107 .0103 .0100 .0100
15 .0110 .0103 .0099 L0095 .0093 L0093
16 .0103 . 0096 .0093 . 0089 . 0087 .0087
17 .0096 .0090 . 0087 .0084 .0082 .Q081
18 .0091 .0085 .0082 .0079 .0077 0077
19 .0086 . 0080 L0077 .0074 .0073 .0072
20 .0081 L0076 .0073 L0070 . 0069 .0069

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Aa? = 0.10, p = 0.5
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Table 9

Number of Stations

Time 2 4 8 16 28 32
1 5.5738 2.9514 1.5212 7728 L4453 .3903
2 .0930 L0468 .0260 L0148 .0113 .0108
3 . 0445 L0224 L0125 .0072 .0055 L0053
4 .0291 0147 .0082 0047 .0037 .0035
3 .0217 L0109 .0G61 .0035 L0027 . 0026
6 L0173 . 0087 L0049 .Q028 .0022 L0021
7 .0143 .0072 .0040 .0023 .0018 .0018
8 .0122 .0062 . 0035 .0020 .0016 L0015
9 L0107 L0054 .0030 L0018 L0014 0013

10 .0095 .0048 .0027 L0016 .0012 .0012

11 . 0085 L0043 L0024 .0014 L0011 .0010

12 .0078 L0039 0022 0013 0010 L0010

13 .0071 .0036 .0020 .0012 .0009 .0009

14 L0066 .0033 .0019 L0011 . 0008 .0008

15 L0061 L0031 .0017 .0010 . 0008 . 0007

16 .0057 .0029 .0016 ,0009 .0007 .0007

17 .0053 .0027 . 0015 . 0009 . 0007 . 0007

18 . 0050 L0025 L0014 . 0008 . 0006 L0006

19 L0047 L0024 .0013 . 0008 .0006 .0006

20 L0045 .0023 .0013 .0007 .0006 .0006

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Ag” = 100, p = 0.540
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Table 10

Number of Stations

Time 2 A g 16 28 32
1 5.5736 2.9513 1.5205 L7720 4441 . 3890
2 .0925 . 0463 .0231 .0116 0066 .0058
3 L0442 .0221 L0111 . 0055 .0032 .0028
4 .0290 L0145 L0072 . 0036 .0021 .0018
5 0215 .0108 L0054 . 0027 .0015 ,0013
6 0172 . 0086 0043 .0021 :0012 .0011
7 L0142 .0071 .0036 . 0018 .0010 .0009
8 L0122 .0061 .0030 .0015 .0009 .0008
9 L0106 .0053 .0027 .0013 .0008 .0007

10 .0094 . 0047 .0024 .0012 .0007 .0006

11 .0095 .0042 .0021 . 0011 . 0006 .0005

12 L0077 .0039 .0019 .0010 .0006 .0005

13 .0071 .0035 .0018 . 0009 .0005 .0004

14 .0065 .0033 .0016 .0008 0005 0004

15 . 0060 .0030 .0015 . 0008 . 0004 . 0004

16 .0056 .0028 .0014 .0001 .0004 0004

17 .0053 .0026 .0013 .0607 .0004 .0003

18 .0050 0025 .0012 .0006 .0004 .6003

19 L0047 .0023 .0012 .0006 .0003 .0003

20 0044 .0022 .0011 . 0006 .0003 .0003

MEAN SQUARE ERROR OF ESTIMATING THE LONG TERM AREAL AVERAGE
OF PRECIPITATION FOR Aa® = 10000, p = 0.50
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behavior observed when estimating the areal average of a rainfall event
(see Rodriguez and Mejia, 1974, and Bras and Rodriguez, 1976a). Intui-
tively, the explanation lies in the assumption of spatial homogeneity

of the process., In the average of an event problem, each observed point
in space is an estimate of what happened at that particular point. 1In
the limit, where the area is the point, the areal average of the event
is exactly known.

Assume now a finite area with ¥ number of stations. This will
result in a given estimation error. Increasing the number of stations
for the same area defines the event better sc the error of estimating
the mean must decrease. Fixing the number of stations but uniformly
spreading them over a now bigger area then results in a poorer defini-
tion of the event and a larger error in estimating its areal average.

The long term average of an event is, according to the statement
of this work, an unknown but constant value in time and space {station-
arity and homogeneity conditions). Each observation in time and space
is an estimate of the long term areal mean. In the limit, one station
at a point, for one or more time periods, is as good an estimate of the
long term mean over an infinitely small area as cover a very large area.
Clearly, this is different from the case of the areal mean of an event.
Imagine N stations over a small area, observing for a fixed number of
time periods. FEach observation in time and space is an estimate of the
long term areal mean. Increasing N, fixing the area size, decreases
the error of estimation due to more observations, but at a lesser rate,
due to the fact that each new observation in space provides less new
information because of increasing spatial correlation. Fixing N instead

and increasing the area (spreading out the available number of stations)
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reduces correlation between stations and so augments information per
spatial observation resulting in smaller error of estimating the constant
loeng term areal mean.

The space-time trade-off curves shown in Figures 10 to 14 lead
to a very important observation. Notice the sharp curvature of the curves,
At any of the extremes, reduction in the number of stations {time) implies
tremendous increases in the number of intervals (stations) required.
Clearly then an efficient and logical design for a given accuracy level
lies at the curve's elbow, Movements to either side of this point inmply

large changes in design parameters.

CONCLUSIONS

A methodology for designing and analyzing data collection networks
with the goal of obtaining the best estimate of the time averaged areal
mean of precipitation has been presented. Example results show simi-
larity tc those of the previous work by Redripuez and Mejia [1974]. The
technique is different, though, and improved in the sense that it expli-
citly considers measurement errors and particular placement of observa-
tion stations in a systematic, not random, manner, Any network configu-
ration can be studied, with spatially varying measurement errors. The
accuracy measure sclved for in this work should be further combined wtih
a cost objective to have a complete network design criteria. Network
design will then be the search for the number and configuration of stations
which for a given duration of observations minimizes an objective function

of mean square estimation error and cost (see Bras and Redriguez, 1970a).



-42-

Other advantapges of the procedure are generality and simplicity.
It is very general in the sense that it is net limited to areas of any
shape (as other derivations have been) and it is not, theoretically,
limited to isotropic and separable covariance structures like the example
used here and as required by Rodriguez and Mejia's derivation. In theory,
although doubtful in practice, the procedure could be even extended to a
non-stationary and non-homogeneous situation.

Another convenient property is the facr that the procedure
explicitly acknowledges an unknown mean for the process and allows intro-
duction of prior information, In their statistical approach, Rodriguez
and Mejia needed a zero mean assumption which, in fact, implies knowing
the answer a priori! This became obvious to the authors when a similar
approach was followed and the Kalman filter was used as an estimator.
Under a zero mean assumption, as the number of stations increased, the
error increased instead of decreased. The estimator was being forced to
use noisy observations when, in fact, it knew the areal mean perfectly,
it was zero. The reader is referred to Bras and Coldn [1977] for this
instructive mistake.

The reader is also referred to Bras and Coldn for the particular
network analysis of a basin in Central Venezuela. There it was found that
5 stations were very satisfactory. The technique was then used to specify
which 5 station combination, of the existing ones, gave the most accurate
measurement. The same reference also provides a more complete set of

figures explaining the results,
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In conclusion, a comment on the use of the kalman filter and other
estimation techniques in hydrolopy aund Water Resourges problems I3 warrinteos,
Certain.y, this is a very powerful tool. It nevertheless requires very
careful and complete understanding. Extensive use Ly the senior author
constantly points to subtle issues which are usually ignored. Tssues of
observability, controllability, knowledge and forwm of prior information,
accuracy of model parameters and numerical problems are constantly appear-—
ing in the use of Kalman filters., The carecless user may end up with
perfect looking results which are of little value and nothing but restatce-

ments of his assumprioons,
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