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ABSTRACT

A sampling procedure was used to collect socioeconomic data which is correlated with
residential water use. One hundred and thirty houses were visited twice to estimate the residential
water use. Eight years of monthly water use of three variables were analyzed. The variables
studied were: industrial, residential, and commercial water use. Number of workers and
climatological series were used as input variables to explain the three underlying water use
variables.

Regression and times series analysis are discussed in general form. Three regression
identification techniques are described: stepwise regression, directed search on t, and all possible
regressions. Multicollinearity problem, detection outliers and residual analysis are also discussed.
Five time series identification techniques are detailed presented: dynamic regression, univariate
ARIMA, transfer function, vector ARMA, and state space techniques.

Linear and nonlinear econometric models were developed to predict the residential water
use. Five different time series models were identified to each time series. Detailed fitting
techniques are presented in this final report. Univariate and multivariate time series technique
were used to represent the stochastic behavior of the monthly water use for the city of Mayaguez
Puerto Rico. The identified stochastic difference equations are: dynamic regression model,
autoregressive moving average model, transfer function model, vector autoregressive moving
average model, and the state space model. Fitting and prediction capabilities were studied to
identify the best model for expressing the industrial, residential, and commercial time series. The
best models were: the dynamic regression model for the residential water use, the transfer

function model for the commercial water use, and the transfer function model for the industrial



water use. Multicollinearity problem and outliers detection was investigated on the selected
models. Residual analysis to check model adequacy was also conducted on the selected models.

Prediction for twelve months ahead were computed with the selected models.
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use. The econometric model uses some economical variables which reveals evidences of affecting
the water consumption. This model is independent of time and may be used to predict the annual

water use for a household.



2. OVERVIEW OF PREVIOUS AND RELATED WORK

The rapid growth of cities cause sever strains on their municipal water supply systems.
To develop a rational urban growth plan it is necessary to estimate the water needs for either new
urbanizations or new industrial parks. Kuttan (1970) pointed out that the enormous development
in the industry and the population of Puerto Rico have demanded careful planning of the island’s
water requirements and resources. Guilbe (1972) pointed out that Puerto Rico’s booming
population has caused competition for water to become more intense and thus the corresponding
water problems have increased in number of complexity. Lobb (1975) indicated that extra
capacity costs are in the range of 30-40% of the total annual cost of a typical water utility.
Therefore, timely and accurate prediction of water use is required for deriving an efficient urban
plan for the rational growth of the major cities in Puerto Rico.

Some statistical models have already been used to predict the water use in Puerto Rico
(Guilbe, 1972; Attanasi, et al, 1975). However, those models cannot be used with the actual data
and conduct the required prediction. Some of the models are poorly identified so that prediction
may not be adequate. For instance the collected data by Guilbe (1972) were processed using the
his model and R? was equal to 0.21. Using the same data it is possible to improve the coefficient
of determination, R>=0.27. A linear model that improves the regression fit to the Guilbe data is

the following:

v =a+ bx®%? + cx? (2.1)

It should be made clear that further improvement can be easily obtained; however, this is not the

main concern of this research. It should be noted that the Guilbe’s model is independent of time
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and is designed to conduct long term prediction. If monthly water use schedule is needed, then
the Guilbe model is unable to provide forecasts for that time period, i.e., a time dependent
function is needed to obtain such forecasts. US Geological Survey (1975) with the
Environmental Quality Board of the Commonwealth of Puerto Rico developed a system analysis
for water resource planning (Attanasi, et al., 1975). Time series model were used to develop
models to study residential, commercial and industrial water use.

Variations of urban water use over time are caused in part by socioeconomic factors such
as city population, household income, and water price, and in part by climatic factors such as
rainfall, evapotranspiration, and temperature. However, water consumption responds to these
factors on different time scale. The population growth in a city, for instance, causes a gradual
increase in water use, which may be apparent over a span of several years, while the effects of
climatic factors are evident in a short horizon (Maidment, and Parzen, 1984).

Most of the demand modeling techniques are base upon multiple regression analysis. In
most of the cases monthly and annual aggregated flow from treatment plants data have been used.,
Most models are used for policy assessment or long-term prediction of water requirements. Many
of the explanatory variables in water demand models do not contribute to short-term predictive
ability. To forecast residential water demand Whitford (1972) uscs the following e¢xplanatory
variables: housing type, household income, population density, regulation on water use, and
pricing policy. Meyer and Mangan (1969) developed a sophisticated model, which uses a set of
multiple regression equations. Thompson (1976) pointed out that Meyer-Mangan’s model has
shown a large forecast error. Obviously, regression is not the best water demand forecasting

technique, specially when the involved variables are auto and cross-correlated. It is well known
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that least square approach fails to identify the appropriate model, since underestimate the
parameter variance. Thus, the t-statistic of the estimated parameter may indicated that the
underlying parameter is significantly different from zero, when in fact it is not (Granger and
Newbold, 1974; Domokos, Weber, and Duckstein, 1976).

Other authors have used time-series regression approaches with lagged demand in the
model to capture the time dependent behavior of the process. Agthe and Billings (1980)
employed lagged past demand and climatic variables to develop a dynamic model. Hansen and
Narayanan (1981) developed a multivariate regression model to study monthly variations in
municipal water demand. Water demand was the dependent variable and the explanatory
variables were: lagged monthly water use, price, average temperature, total precipitation, and
percentage of daylight hours. He claims that his model is useful to study the impact of
management decisions such as price changes, and conservation programs.

Maidment, et al., (1985) developed a time sertes model to forecast the maximum daily
demand rate during summer water conscrvation period. The water use data of different
metropolitan cities seems to exhibits strong influences of temperature and rainfall on the demand
for treated water. They pointed out that climatic variables most influence daily water use,
especially during summer months. Maidment and Miaou (1986) developed a time series model
with intervention to represent the daily water use.

Smith (1988) presents a time series model of daily municipal water use. He claim that
his model is a conditional autoregressive process with randomly varying mean. The varying
accounts for changes in water use that result from interaction over time of the price of water,

plumbing code provisions, and customer income.
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Weber (1989) uses a regression model to forecast water demand, the input data are:
monthly water consumption, evapotranspiration, temperature, rainfall, water price, household
income, and consumption patterns. Excellent literature reviews of water use modeling and

forecasting approach are given by Maidment and Parzen (1984), Maidment, et al., {1985), and

Sastri (1987).



3. DATA COLLECTION

Data involved in this research include water use, climatic variables, and socioeconomic
variables. Data can be classified into econometric data, monthly water use, and climatic factors.
These data were obtained from different sources: a direct survey, government offices, and

journals.

3.1. Sampling data.

A direct survey was designed to collect the required data for the econometric model. It
is expected that urban water use over time is correlated with some socioeconomic factors such
as population, household income, automobile washing requirements, garden areas, number of
bathrooms, etc.

Population of the city of Mayaguez Puerto Rico was defined as the population for the
purposes of study. A stratified random sampling was conducted. A non-overlapping group with
similar characteristics was defined as a stratum. A sample size in each stratum was determine

so that the following cost coefficient function was minimized.

20
C = co+2 c,1; (3.1)
=

where the value of ¢, is the general and fix expense, the coefficient ¢; i1s the sampling cost
associated with stratum i, the value n; is the sample size in the stratum 1, and C the total sampling

cost. The total sample size that minimizes the sampling cost is:
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for i=1,2,...,20

where N, is the total units in the ith stratum, and S, is the standard deviation of water use in the

ith stratum. The optimum sample size was 130 and the sample size for each stratum is exhibited

in Table 3.1
Table 3.1 Sample size for stratum
Stratum Sample size Stratum Sample size

Algarrobo 8 Naranjales 1
Guanajibo 12 Quebrada 8
Juan Alonso Quemado 4
Leguisamo Rio Cafias 4
Limon Rio Caitas arriba 1
Malezas 1 Rio Hondo 3
Pueblo 46 Rosario 2
Pueblo arriba 1 Sabalos 18
Miradero 11 Sabanetas 3

Montoso 1 Batayes

A suitable questionnaire was designed (see appendix A) and two visits were conducted

to the same house in order to estimate the daily water consumption.

questionnaire are summarized and shown in appendix B.

Collected data from



3.2. Water use data.

The Aqueduct and Sewer Authority (ASA) was one of the main sources of information
for this research. Eight years of bimonthly water use data were provided by ASA. The variables
involved in the data provided by ASA are: residential, commercial, and industrial water use.
Appendix C exhibits these data and Appendix 1) shows the plots of these variables. The accuracy
of provided data was questioned however, no additional information was provided to measure the
quality of the given data. Although, many times and for different media was applied for the daily
and annual water use data, this agency does not provided the asking data. This situation may
occur because during the project time the ASA was highly criticized because of the water service

dose not correspond to the expected public demands.

3.3. Climatological data.

Monthly temperature and rainfall for Mayaguez was obtained from Climatological data
of Puerto Rico and Virgin Islands, which is available from the National Oceanic and Atmospheric
Administration. Appendix C presents the collected data and Appendix D shows the plots of the

underlying data.
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4. MODEL BUILDING TECHNIQUES.

Two major techniques for model building are study in this research: regression, and times
series analyses. Regression models are used to compute long term prediction. On the other hand,
times series models are useful to predict the stochastic behavior of water use in a short time
period. This is because times series model identification is base in the autocorrelation function
of stationary times series. Autocorrelation function for a stationary time series approach zero for
large values of lagged time. Regression techniques were used to identify an econometric model

and time series technique were implemented to describe the monthly water use variables.

4.1 Regression Analysis.

Regresston analysis is a statistical technique for investigating and modeling the
relationship between variables. Regression analysis is based on the method called least squares
which takes the best fitting model to be the one that comes closest to the data in the sense of
minimizing the sum of squared discrepancies between the observed value and the values given
by the model.

Building a regression model that includes only a subset of the available regressors involves
two conflicting objectives: (1) It is desirable to have as many regressor variables as possible so
that the information content in these factors can influence the predicted value. (2) It 1s also
desirable to include as few regressors as possible because the variance of the prediction values
increases as the number of regressor increases. The process of finding a model that is

compromise between these two objectives is called the identification procedure. If the model is
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linear in parameters, there exists various systematic technique to identify the regression model;
however, if the model is not linear on parameters then empirical estimation must be conducted
since there is not systematic method. The most popular and useful technique for doing model
identification are: directed search on t, stepwise regression methods, and all possible regressions.

(1) Directed search on t. This method was proposed by Daniel and Wood (1980) and is
useful when the number of candidate regressors is relatively large, for more than twenty regressor
variables. This method consist on fitting a full model and ranking the regressors according to
decreasing order of magnitude of the | t-statistic |, and then introducing the regressors into the
model one at a time in this order and select the model which exhibits that the number of
parameters is equal to the Mallows’ C, statistic (Mallows 1973).

(2) All possible regressions. This procedure requires to fit all possible regression
equations involving one candidate regressor, two candidate regressors, and so on. The best
regression equation is the one that has the largest value of adjusted coefficient of determination,
R,? (Montgomery, 1982). If the intercept term is included in all equations, then if there are K
candidates regressors, there are 2* total equations to estimate and e¢xamine. Thus, this method
is recommended when few regressors are available, K<10.

(3) Stepwise regression methods. Because evaluating all possible regressions can be
burdensome computationally, various methods have been developed for evaluating only small
number of regression models by adding or deleting regressors one at a time. These methods are
referred as stepwise-type procedure, which are classified into three broad categories: (1) forward
selection, (2) backward elimination, and (3) stepwise regression which is a combination of

procedures (1) and (2) (Montgomery, 1982).
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Once model identification task is accomplished it is necessary to conduct model
diagnostics and residual analysis. The most important diagnostics are detection of outliers and
multicollinearity problems. Some times the regressors are nearly linearly related, and in such a
case the inferences based on the regression model can be misleading or erroneous. When there
are near linear dependencies between the regressors, the problem of multicollinearity is present.
There are two basic method for conducting multicollinearity diagnostics: the variance inflation
factor, and the condition number (Montgomery, 1982). When the variance inflation factor is
larger than five or the condition number is larger than one hundred, serious multicollinearity
problem has been detected. The problem of multicollinearity can be solved by conducting
orthogonal transformation to the regressor variables. The most useful orthogonal transformation
are the ridge and the principal component regressions (Draper and Smith, 1981).

Outliers are data points that are not typical of the rest of the data. Depending on their
location, outliers can have moderate to sever effects on the regression model. Outliers should be
carefully investigated to see if a reason for their unusual behavior can be found. Some times
outliers are bad values, occurring as a result of unusual but explainable events. In this case, the
outlier should be corrected or deleted from data. If the outlier is an unusual but perfectly
plausible observation. Deleting this point to improve the fit of the equation can be dangerous, as
it can give the user false sense of precision in estimation and prediction. Various test have been
proposed for detecting outliers. The most popular tests are: standardized residuals, and Cook’s
tests (Montgomery, 1982). Residuals that are considerable larger in absolute value than the

others, say three to four standard deviations from the mean, are potential outliers.



13

Residual analysis is one of the strategies to measure the model adequacy. Residual

analysis check whether or not the assumption made on model building are satisfied. That 1s,

residual analysis checks whether or not the following assumptions are satisfied:

(2)

(b)

(d)
(e)

Relationship between the dependent variable and regressor variables are linear, or
at least is well-approximated by a linear relationship.

The error term has zero mean.

The error term has constant variance.

The errors are independent.

The errors are normally distributed.

Thus, a model which has enough regressors to explain the dependent variable with

significant parameters, small MSE, without problems of multicollinearity and outliers, and also

with approval residual analysis may be considered as a the best regression model.

4.2 Times series analysis.

A time series is an ordered sequence of observations. Although the ordering is usually

through time, particularly in terms of some equally spaced time intervals. The ordering may also

be taken through other dimensions, such as space. The intrinsic nature of time series is that its

observations are dependent or correlated, and therefore the order of the observation is important.

Hence, statistical procedures that rely on independent assumption are no longer applicable, and

different methods are needed. The body of statistical methodology available for analyzing time

series is referred to as time series analysis.
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The statistical dependence in data is expressed by the correlation or autocorrelation
between successive observations. Therefore the existing methods of time series analysis are based
on empirical or estimated autocorrelation or its Fourier transform spectrum. The empirical
autocorrelation is a poor estimator of the theoretical autocorrelation. This fact makes the
techniques of time series analysis based on such estimates difficult and cumbersome, requiring
heaving reliance on ad hoc trial and error procedure.

This difficulty can be avoided by consistently employing methods of linear system analysis
and statistical inference. A time series is treated as a realization of the response of a stochastic
system to uncorrelated input. The mathematical model for a dynamic system on discrete time
reduces a correlated time series output to the independent or uncorrelated input. Thus, the times
series methodology can be summarized as finding a model that accomplishes this reduction to
independent data and then using the regular statistical techniques for independent observations
for estimation, and prediction.

A stochastic process in general is a sequence of random variables that can be described
by its corresponding joint probability distribution, p(w,,...,w,). To infer such a general probability
structure from a single realization, (w,, ..., w,), would be very difficult and some times
impossible, unless the process is in statistical equilibrium, which is usually called stationary. A
stochastic process is said to be strictly stationary if its joint probability distribution is invariant
with respect to time. That is, p(w, ..., W)=p(W,4, ..., Wy for any integer k. A process
characterized by having a constant mean and a covariance function which is independent of time

is called covariance stationary or stationary (Fuller, 1976).
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A general approach for modeling univariate or multivariate time series starts by
determining whether or not each time series is stationary. A empirical approach consist of
plotting the given time series. If the underlying time series exhibits variance changes over time
then the process is not stationary and variance stabilization is required. If the variance of a given
time series is unstable then its variance can be stabilized by means of the power transformation.
On the other hand, if the time series is not stable in the mean then the process is not stationary
and the trend must be subtracted either by differencing (w-w,} or by fitting a polynomial
function and then subtracting the fitted function from the observed values.

A general transformation to stabilize the variance was introduced by Box and Cox (1964).
This power transformation can be expressed as follows:

l_
riwy) = w = X2 (4.1)

where A is transformation parameter. Some commonly used values and their associate
transformation are:

Table 4.1 Typical transformations.

Transformation Transformation
parameter () T(W)
-1 /W,
-0.5 IVW,
0 In W,
0.5 VW,
1 no transformation

It should be noted that transformation parameter can be incorporated as a model parameter

to be estimated from data. The maximum likelihood estimate of A is the one that minimizes the
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residual sum of squares. Frequently, the power transformation no only stabilizes the variance,
but also improves the approximation to normality.

Once the time series are stationary then those series are ready to start the identification
procedure. The identification procedure changes depending whether univariate or mutivariate
model will be identified. In this research five identification procedures will be discussed: the
dynamic regression model, the univariate ARIMA model, the transfer function model, the vector

ARMA model, and the state space model.

4.2.1 Dynamic regression models.

Regression with autocorrelated errors is usually called a dynamic regression model (Haugh
and Box, 1977). The identification task is actually achieved in three steps. The first step consist
of fitting a multivariate regression model ignoring the autocorrelation problem. Conventional
regression model identification techniques are used; for instance, stepwisc regression, directed
search on t, and all possible regressions. At this step, one should be aware that the variance of
residuals underestimate the variance of errors, i.¢., the values of t-statistic are exaggerated. The
second step is subtract the fitted regression model from the observed values and then fit an
ARMA model to obtained residuals. The last step is to fit simultancously the'regression and the
ARMA model by means of using lagged variabies and a nonlinear estimation routine. A
computerized routine that can handle this task is called the SYSNLIN and is available at the

computer package called SAS/ETS (1985).
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The general expression of dynamic regression models is given by:

where 8 (B)
_ B
“c " T(m (4.1)
and
0(B) =1-0,B-...-8,89
®(B) =1-¢,B-...-$,B?

where a, is a sequence of independent and normally distributed random variables with zero mean
and constant variance. The letter B is the lag operator Bx=x,,, the root of the polynomials 8(B),
and @®(B) lie outside of the unit circle. The values of p, q, 8’s and ¢’s are parameters to be

estimated from data.

4.2.2 ARIMA models.

Univariate autoregressive integrated moving average (ARIMA) model is a stochastic linear
difference equation that expresses a univariate process as a function of its past and the lagged
error component.

A general ARIMA(p,d,q) model can be expressed as follows:

(1-¢,B-...-¢,BP) (1-B)9wW, = 0,+(1-0,B-...-0,89a, (4.2)
where W, is the stochastic process, ¢’s and 8’s are parameter to be estimated from data, a, is a
sequence of independent random variables with zero mean and constant variance, B is the back

shift operator, p is number of autoregressive parameters, q is the total of moving average

parameters, and d is the order of differencing.
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In time series analysis, the most crucial steps are to identify and built a model based on
available data. A method of identification can be described as follows:

{1) Plot the time series and determine whether a mathematical transformation is required.
The most common transformations are the power transformation and differencing. Since
differencing may create some negative values, power transformation is applying first before
taking differences.

(2) Compute and examine the sample autocorrelation function (ACF) and sample partial
autocorrelation function (PACF) of the original series to further confirm the necessary degree of
differencing. If the sample ACF decays very slowly and sample PACF cuts off after lag one, it
indicated that differencing is needed. To remove non-stationary mean it is necessary to
considered (1-B)*W,, so that, the parameter d is known at the end of this step.

(3) Compute and examine the sample ACF and PACF of the properly and differenced
series to identify the orders of p and q. The values of p and q may be obtained as follows: Fit
the ARMA(p,p) where p is the largest significant lag from the ACF or the PACF. Next, drop
all the parameters whose estimates are not significant, and test whether the residuals behave as

white noise. The described procedure is illustrated in Chapter 5.

4.2.3. Transfer function models.

The concept of a transfer function derives from the idea of variations in the independent
or input variables transferring into variations in the dependent or output variable. Transfer
function models are logical extension of univariate times series models which utilize only the past

history of the series for modeling. Assuming that x, and w, are the properly transformed series
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so that they are both stationary. The output series w, and the input series x, are related through
a general model

we = v (Bl x4,

where (4.3)
v(B) = i v,B7

where v(B) is referred as the transfer function, and n), is the noise series of the system that is
independent of the input series x,. It should be noted that the transfer function model is also
known as the ARMAX model. The coefficient of the transfer function, v,, are known as the
impulse response weights. The transfer function is said to be stable if the sequence of these
impulse response weights are absolutely summable. Thus, in a stable system, a bounded input
always produces a bounded output. The transfer function is causal if v;=0, for j<0. Thusin a
causal model, the system does not respond to input series until they have been actually applied
to the system. Thus the present output is affected by the system’s input only in terms of its
present and pass values. In practice a causal and stable model is considered.

The purpose of the transfer function modeling are to identify and to estimate the transfer
function, v(B), and the noise model for n,, based on the available information of the input series
x, and the output series w,. The major difficulty is that x, and w, are finite and the transfer
function contain an infinite of coefficients. To alleviate this difficulty, v(B) can be expressed in

a rational form:
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o, (B)B*
v (B) gi(;)
where (4.4)
w (B) = 0,-w,B-...-w EB*
8,(B) = 1-8,B-...-8 BF

and b is a delay parameter representing the actual time lag that elapses before the impulse of the
input variable produces an effect on the output variable. For a stable system the roots of §(B)
are assumed to be outside of the unit circle.

The general procedure to identify the transfer function model can be described as follows:

(1) Prewhiten the input series,

& (B) '
e N (4.5)

X
where o, is a white noise series with mean zero and variance 6°,.
(2) Calculate the filtered output series. That is, transform the output series w, using the

above prewhitening model to generate the series B, where

=)
B, = 8 (5 X, (4.6)

X

(3) Calculate the cross-correlation function (CCF) between «, and B, to estimate v,

9, = 2P, (k) (4.7)

The significance of the CCF is tested by comparing with its standard deviation (n-k)'*. The

values of b, r and s are identified by observing the form of the CCF.
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(4) Preliminar estimation of the transfer function is obtained by nonlinear regression.

&, (B)

¢(B) =
(B) 5 (8

BP (4.8)

(5) Compute noise series. Once preliminar estimates for the transfer function is obtained,

noise series is computed as follows:

B¥x, (4.9)

(6) Identify the noise model. Based on the sample ACF and PACF of residuals the

following structure is identified:

. _ 8(B)
N = F(H

a, (4.10)

(7) Full model estimation. Nonlinear regression method is used to conduct estimation

for the full model.

O (B @ (B) .
G ( )Xt_b+®((B)) a. (4.11)

(8) compute residuals. If residuals satisfied the assumption of independence, normality,
and constant variance, and also if all the parameters are significant, then the obtained model is
the appropriate transfer function model. If this is not the case, then the processes starts from step

(1) over again, until a satisfactory model is developed.



22
4.2.4. Vector ARMA models.

Times scries data in many empirical studies consist of observations from scveral variables.
In transfer function models, a specific relationship between input and output variables was
studied. However, in many fields of application the transfer function may not be appropriate
model. Thus, a more general class of vector time series models it may be needed to describe’
relationship among several times series variables. The vector autoregressive moving average
(vector ARMA) model permit the testing for lead, lag, independent, contemporaneous and
feedback relationships among the variables.

The vector ARMA models were introduced by Tiao and Box (1981) and the general

representatton can be expressed as follows:

¢, (B)® (B Z, = C+0,(B)8,(B”") a, (4.12)

where Z, is a stationary kx1 vector of k time series each having n observations, C is a kx1 vector
of constants, and a, is a sequence of white noise vectors, independently and identically distributed
as multivariate normal with mean 0 and covariance mattix E. The kxk matrices ¢,(B) and 6,(B)
are nonseasonal matrix polynomials in the back shift operator B. Finally, the kxk matrices $,(B%)
and ©y(B®) arc seasonal matrix polynomials in the back shift operator B and have the following

form:
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$.(B) =I-¢,B-¢,B*-...-¢,B”
8. (8) = 1-0,8-0,8>-...-0_B¢
®,(B°) = I-®,B°-®,B* .., -0 B (4.13)
and

©,(B*) = I-0,B*-0,8%~,,.-0,8%
where I is a kxk identity matrix, the ¢’s, ®’s, &’s, and O’s are kxk matrices of parameters to be
estimated from data, and s is the seasonal period.

To ensure the properties of stationarity and invertibility, all roots of the determinantal
polynomials |¢,(B)|, |6,(B)|, |®:(B*)|, and |0y(B*)| are required to lie outside of the unit
circle.

As an example, consider the following vector ARMA(2,1) model, let Y=Z-C be the

vector of deviation from C, and k=2.

(r-¢,B-¢,B*)y, = (1-0,8) a, (4.14)
which is equivalent to
.Vl,t (bil ¢’JJ:2 yl,t—l dﬁl ¢J%2 yl,t—z al,t 8%1 612 al,c—l
= + + - (4.15)
Vael 2 daaflV2 el (921 %[0z 02 (Bl |05 82,)l%. 0

In principle, identification of vector time series models is similar to identification of
univariate time series models, Thus, for a given observed vector time series Z, Z,, ..., Z, its
underlying model can be identified from the pattern of its sample correlation and partial
correlation matrices, assuming that each time series becomes stationary after proper

transformation is applied.
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4.2.5. State space models.

The state space of a system is defined to be the minimum set of information from the
present and past such that the future behavior of the system can be completely described by the
knowledge of the present state and the future input. Thus, the state space representation is based
on the Markovian property, which implies that given the present state, the future of the system
is independent of its past. Consequently the state space of the system is called the Markovian
representation of the system.

Let Y, be a stationary multivariate times series of dimension k. The state space

representation for Y,,, is given by

Zt+1 = tht+Gat+1, (4.16)
Yt: = Hzt

where Z, is px1 state space vector, F is pxp transition matrix, G is pxk input matrix, H is kxp
observation matrix. The first equation specifies how the state vector evolves through time while
the second equation specifies the relation between the time series and the state vector. Z, contains
the set of present and past information that is correlationally relevant for forecasting. Its first k
components comprise Y, a, is a sequence of independent, zero mean random vectors with
constant covariance matrix. H takes the form [I 0] where I is a kxk identity matrix and 0 is a
kx(p-k) zero matrix. The upper kxk submatrix of G is an identity matrix.

The above state -space representation of Y, is not unique. Multiplication of (4.16) by any
nonsingular matrix will yield another state space representation that is also true. However,
Akaike (1976) showed that a multivariate linear stochastic system has a canonical representation

which is unique. Identification of the canonical state space model is accomplished in two steps:
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(1) determination of the amount of past information to be used in the cancnical correlation
analysis. This is achieving by fitting successively higher order autoregressive models to the
observed series and compute the Akaike information criterion (AIC) for each fitted model. The
optimum lag into the past p is chosen as the order of the autoregressive model for which the AIC
is minimum. (2) The second step involves the selection of the state vector via canomnical
correlation analysis between the set of present and past values {y,, ¥, > Yo Yie1> -5 Yiols -or
Yiips» a0d the set of present and future values {¥,,, Y55 - Yip Yii)p s Yire1|p o Youpp)» Where
¥ s denotes the conditional expectation of y; ., at time t. The two previous set are referred as
data space and predictor space, respectively. It should be noted that the predictor space does not
include the conditional expectation for s>p, since for any vector ARMA(p,q) process, ¥, ., for
s>p is completely determined by y;, ¥ s Yiupe 1hus, once the optimum order p is
determined, the predictor space consist of conditional expectation of ¥;;, ¥jui (e --» Yjeppe 1f the
coefficient of the vector ARMA are less than full rank, then the predictor space is lincarly
dependent. However, the state space must be of linearly independent components of the predictor
space. Thus, the canonical correlation analysis is used to identify the linearly independent
components. Once the component of the state vector are selected the matrices F and G are
estimated. The optimum autoregressive model provides an estimate of the input matrix G and
the covariance matrix of the innovation. An estimate of F matrix is obtained during the canonical

correlation analysis.
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5. MAYAGUEZ WATER USE MODELS

Increasing interest has been raised in determining the urban water needs. This interest has
resulted from the necessity to avoid future water shortages. An adequate potable water supply
is a primary factor in the well-being and economic progress of the city of Mayaguez, Puerto Rico.

Model scope is limited to the city of Mayaguez. An extension to other parts of Puerto
Rico may require to implement the sampling procedure and/or update the derived models to the
current data. Approximate prediction may be obtained from the Mayaguez models, after using
the appropriate input values.

This chapter presents the models fitted to the water use of the city of Mayaguez. The
behavior of the three variables were study: residential, commercial, and industrial water use.
Univariate and multivariate difference equations are fitted and presented in the following order:
linear and nonlinear econometric models for residential water use, and monthly models for

residential, industrial, and commercial water demands,

5.1. Econometric models.

It is desirable to have an econometric model to predict the residential water use for long
term periods and for a specific urban growth. The econometric models are useful for purposes
of urban planning. The available resources should be compared with water requirements to
generate a reasonable urban growth. Linear and nonlinear models were developed with the

socioeconomic data obtained by means of a sampling procedure.



5.1.1. A linear econometric model.

The identified linear model can be expressed as follows:

VRW = B, +5, (AT)?+B,(NP) >+, (NP)® +B,HI +¢
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(5.1)

where the variables RW, NP, AT, NB, HI represent the residential water use, the number of

people, the number of automobiles, the number of bathrooms, and the income in each household,

respectively, € is a random variable and normally distributed with zero mean and constant

variance. It should be noted that (5.1) is lincar on parameters. Parameter estimation and test

statistics are exhibit in Table 5.1. This table shows that all parameters were statistical significant

at the 95% confidence level. The best linear model still reveals poor fitting since there exists a

weak correlation between the explanatory variables and the dependent variable. Although the

identified model shows a poor fitting this is an improvement over the model developed by Guilbe

whose R? was 0.21.

Table 5.1. Parameter estimation for the linear model.
YARIABLE Estimate T-ratio
[ 0.56093 20.14
B, 0.01117 223
B3, 0.0015 4.14
B3, -1.98E-06 -2.75
13, 6.42E-06 5.00
R* = 0.437 MSE = 0.0348

It is well known that if a regression model has the multicollinearity problem, then the

variance of the estimates become very large and therefore identification and prediction problems

may occur. The variance inflation factor (VIF) is one of the well known statistics to test whether

or not a regression model shows the multicollinearity problem. The VIF associated to AT?, NP?,



28

NP®, and IF are: 1.47, 4.36, 4.15, and 1.40, respectively. Therefore, the identified model has not
multicollinearity problem since the VIF values were less than {ive. The condition number,
defined as the ratio between the maximum eigenvalue divided by the smallest eigenvalue, is
another statistic to detect the multicollinearity problem. The eigenvalues associated to the above
variables were A,=3.21, A= 1.12, A,=0.33, A= 0.22, A,=0.09. Thus, the condition number is
35.66. Since the condition number is less than one hundred this result confirm that the regression
model does not have the multicollinearity problem.

Once model identification task is accomplished residual analysis is conducted to determine
whether or not the postulated assumptions on errors are satisfied. Figure 5.1 shows that the
variance is unstable, and thercfore, a variance stabilization transformation was implemented.
Figure 5.2 shows residuals after implementing the power transformation. Once the variance
stabilization transformation was implemented the Bartlett test shows that there is enough
evidences to accept the hypothesis that the variance is constant, the Bartlett statistic 1s 3.815 and
the critical value at the 95% confidence is 15.51. The Durbin-Watson statistic, 1.88, shows at
95% of confidence that autocorrelation of first order is not serious. Kolmogorov-Smirnov test
shows that there is not enough evidences to reject the hypothesis that residual follows a normal
distribution, since the Kolmogorov-Smirnov statistic is 0.0455 and the critical value at the 95%
confidence is 0.1206. Figure 5.3 exhibits the normality probability plot which confirms this
result. Finally, a rough check of outliers can be made by examining the standardized residuals, -
since no residuals fall beyond the three sigma there is enough evidence to infer that no outlier

is present.



Residual Plot for water use

g T T T
T
0.8 e e
0.5 - PR R -

o . :

g e

5 0.2 F f :

4 ! L0

3 - ]

0.4 R
T R
_0.77 ,,,,,,,,,,,, e |
| 1 1 1 1
0 0.3 0.6 0.9 1.2 1.5
Frredicted
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Figure 5.3 Normal probability plot.

5.1.2. A nonlinear econometric model
Since the coefficient of determination for the linear model was small, a nonlinear

regression model was studied and the identified model is the following:

I l 1
RW = e("‘wlmm( }+ (e ; 778 D prietioBep i ' log(e,)G {5.2)

where the variables RW, NP, HI, B, AT, and G represent the residential water use, the number
of people, the annual family income, number of bathrooms, number of automobiles, and garden
area in each household, respectively. The values of a’s, b,, ¢,, d;, e, are parameters to be

estimated from data. A nonlincar optimization algorithm was used to estimate the parameters of
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the above model and results are presented in Table 5.2.

Table 5.2 Parameter estimation (nonlinear model).

Parameters Estimate T
a, -0.0381 -1.93
a, -1.4542 -9.23
b, 9.6E-06 4.04
c -5.5083 -6.21
d, -4.0532 -8.43
& 0.9350 14.25

R* =0.4774 MSE = 0.0963

It should be noted that all estimates are significant at the 95% of confidence. The coefficient of
determination is better than the linear model. This coefficient shows that 47% of the water-use
variability is explained by the model. The Durbin-Watson statistic, 2.014, indicates that data do
not reveal evidence of the first order autocorrelation. Kolmogorov-Smirnov statistic, 0.0842,
indicates that there is not enough evidence to reject the hypothesis that residuals follow a normal
distribution (critical vatue 0.12 at 95% of confidence). This result is also confirmed with the
normal probability plot exhibited on Figure 5.4. The Bartlett statistic, 7.0487, indicates that no
power transformation is needed (critical value 15.51, at 95%). Furthermore, standardized
residuals do not reveal the presence of outliers.

The eigenvalues associated to the explanatory variables are: A,=4.43, A,=0.56, A,=0.46,
2,=0.21, A,=0.19, and A,=0.13. Thus, the condition number is 34.07, which indicates that the

regression model does not show the multicollinearity problem.
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Figure 5.4 Normal prcbability plot.

5.2. Industrial water use models.

Five different models were fitted to the monthly water use data and the best model in
terms of fitting and prediction capabilities is selected. Eight years of monthly water use data
were used (January, 1984 to December 1991). The fitted models are: dynamic regression,
ARIMA, transfer function, vector ARMA, and the state space models. The variables studied are
residential, commercial, and industrial water use. Detailed description for model identification
associated with the industrial water use is presented in this chapter.

5.2.1. The Dynamic regression model for industrial water use.

There are many variables which explain the consumption of indusirial water use.
However, historical records for those variables do not exist. The available monthly records were
temperature, rainfall and number of workers. Rainfall variable was not included in the models

since this variable has no correlation with the industrial water use, On the other hand,
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temperature and number of workers were variables used to explain the industrial water use for
the city of Mayaguez Puerto Rico. The SYSNLIN routine of SAS/ETS computer package was

used. The identified model has the following form:

veP (TE + TE)

(5.3)

o

5 ﬁ'é p‘i @"3 3@ ﬁ’m

+ + F——+g

+ + +
NWI, nwr* TE' NWI*, NWI', TE.,

1

where the variables IW,, NWI,, and TE, represent the industrial water use, number of worker, and
temperature at time t, respectively, a, is e sequence of independent random variables with zero
mean and constant variance. These variables were observed on monthly basis. The B’s are
parameters to be estimated from data. Statistics and parameter estimation are presented in Table

3.3

Table 5.3 Parameter estimation (dynamic model)

Parameter Estimate Prob>T
B, 0.8986 0.0001
B, ~0.3734 0.0083
B, -6.86E13 0.0255
B3, -3.45E13 0.0001
B, 43152 0.0003
[P -2.63E10 0.0001
B3 2.61E14 0.0001
B3, 1.31El1 0.0001
B3, -1.71E13 0.0001
B, 2.23E13 0.0001
By 2.21E10 0.0001
Durbin-Watson VMSE R? VvMS "

P

2.048 34018.9 0.6761 21186.4 “
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Table 5.3 shows that all the parameters are significant at the 95% of confidence. The coefficient
of determination shows that 67.61% of the variance is explained by the model. The Durbin-
Watson statistic shows that residuals do not present autocorrelation of the first order. The values
of VMSE and V' MS, are statistics that measure the fitting and prediction capabilities of the

model.

5.2.2. The ARIMA Model for industrial water use.

Figure 5.5 shows the sample ACF of the industrial water use. This figure exhibits the
pattern of a stationary autoregressive process, i.e., differencing is not needed. Figure 5.6 exhibits
the sample PACF for the underlying series and suggests that there may exist three significant
parameters at lags one, two, and twelve. Thus, after conducting model fitting and hypothesis
testing it was found that parameters at lag one and twelve are significant and the one at lag two

was not significant. Therefore, the fitting model can be written as follows:

a
(1—¢1B“$123 }
where (5.4)
3
EQWSy = p = ——
L T

where IW™ is the transformed industrial water use, with the parameter of transformation A=2.
The computer program, Autobox, was used to obtain a nonlinear parameter estimation. Table
5.4 presents parameter estimation and some statistics which describe the fitting and prediction

capabilities of the model. It should be made clear that all the parameters are significant at 95%



of confidence.

Table 5.4. Parameter estimation (ARIMA model)

Parameter Estimate T Ratio
0y 45,866.56 14.12
b, 0.7625 11.92
s -0.1557 2.33
AIC vMSE VMS,
" 2264.07 31500.33 399454
N UL SRR T | ________ T ]
0.5 b “““““'""""1j::§;i:::::::::::;::"‘
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Figure 5.5. Sample ACF for industrial water use.
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Figure 5.6. Sample PACF for industrial water use.

5.2.3. The transfer function model for industrial water use.

Number of workers and temperature were used as input variables. The structure of the

prewhitening models are the following:

(1+DASEY(L-BYNWI, = &,

and (5.5)
(1 +1.57B+0.82B)(TE,-7.63)
= 4
1-0.628 24

where o’s are the residuals of the corresponding time series. After implementing the
identification procedure described in section 4.2.3. the transfer function is:

where IW® is the transformed industrial water use, with A=2, NWI, is the number of industrial
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W = _mmﬂ_g)NWEE+(—w4,234—m6,2$6ﬁ‘£f
a (5.6)

¢

(1-4,B)(1-$,85(1-$,8"

+

workers at time t, TE, is the average temperature at time t, and t is the time index given In
months. Parameter estimation was obtained by means of using the computer program Autobox.
Table 5.5 shows that estimates are significant at 95% of significance. Fitting and prediction
statistics are also exhibits in this table.

Table 5.5 Parameter estimation (TF model)

Series Parameter Estimate T Ratio

NWI, 0o -1517127 2.41

TE, Wy, -0.116E10 -2.15

o -0.155E10 -3.02

¢, 0.9634 18.43

¢, -0.3752 -3.31

4 (198 -0.4679 -4.47

AIC VMSE VMS,
|| 1555.32 30653.3 21922.79

5.2.4. The vector ARMA model for industrial water use.

MTS computer program was use to identify and estimate the vector ARMA model. Table
5.6 presents the matrices for the sample ACF and PACF. The positive or negative sign indicates
that the associate component is significant at the 95% level. Whereas, the "." indicates that the
associate component is not significant. Matrix sample ACF shows an autoregressive pattern and

the matrix sample PACF cut off at lag two which indicate that the industrial water use can be
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expressed as a vector ARMA(0,2).

Table 5.6 Matrix sample ACF and PACF.

Lag ACF signs PACF signs
1.00 -.33 0.17 + - 1.00 -.33 0.17 + .

0 -33 1.00 -.18 -+ - -33 1.00 -.18 -+ -
0.17 -.18 1.00 .-+ 0.17 -.18 1.00 Lo+

0.77 -27 0.16 + - 0.77 -.28 0.15 + -

1 -.28 0.69 -.24 -+ - -27 0.69 -.14 -+,
0.15 -.14 0.76 ot 0.16 -.24 0.76 .-+

0.54 -.28 0.08 + - -.13 0.08 -.03 Ce

2 -.20 0.67 -.29 -+ -.14 0.37 0.03 .
0.12 -.10 0.43 Lt -.16 -.08 -.36 .-

0.48 -.31 -.02 +-. 0.29 -.10 0.09 + ..

3 -20 0.59 -22 -+ - -.14 0.07 -.14 Ce
0.13 -.14 0.05 ch -08 0.17 -.36 L+ -

Thus, the fitted model can be expressed as follows:

z

Ioal gl 22
ﬁrW; (Cl @M EIZ 813 al,t—l 81;_ 912 ﬁl} ai,r—Z Ql,?

; _ Poal ol a2 a2 5.7
NWE| = [0y =8; By 85|, |=|0y 8% O|Bara|*|% (5.7}
TE c 1 gl gl ila 2 a2 nf|la a

t 3] |8, B8y, 85|["3e-1] |85, 85, 85|zl [P

Table 5.7 shows estimates for the parameters and the t-statistics which indicated that only the

listed parameters are significant at the 95% of confidence.



Table 5.7. Parameter estimation (vector ARMA model)

Parameter Estimate t-ratio
<, 207950 3.72

C, 19742 12.32
C, 78.59 3.50
9, 0.9496 9.09
0,,' 0.5329 5.16
0,,' 0.7978 7.28
0, 0.5337 5.13

AIC VMSE VMS,
2040.9 39668.73 31322.86 "

5.2.5. The state space model for industrial water use.

The identification procedure of state space model was implemented by means of using the
routine STATESPACE of the computer program SAS/ETS. The first step is to search for the
optimal order in the autoregressive (AR) model fitting of the data. Because AIC is minimum at

p=3, the optimal AR order is chosen to be 3. Table 5.8 shows the AIC values for different AR

model fits.
Table 5.8. The optimum value of p
p 0 1 2 3 4
AlC 3581.7 3368.3 3348.6 3343.3 3351.9
p 5 6 7 8 9
AIC 3355.1 3368.4 3378.1 3386.5 3392.1

Let Y=[NWT, TE, IW] for t=1,..., 96 be a stationary multivariate time series. Based on p=3,

the canonical correlation analysis between the data space { Y,, Y., ... , Y,;} and the predictor



40

space {Y,, Y. jn» -o» Yy3)0 15 computed. Although Y., . ..., Y,.,, are potential elements of
the state vector, this does not mean that all their components NWT ;.. TE, )., IW,y;;,,, for i=1,2,3
are needed in the final state space vector. Thus, the canonical correlation analysis is performed
between
{NWT,_, TE , IW_, i=0,1,2,3}

and

INWTL 0 TEoe IWaipm =0,1,2,3}
as is shown in Table 5.9 .

Table 5.9 Canonical correlation analysis.

State vector Correlation C 1 df
NWT,, TE,, IW., 1.00, 1.00, 1.00, 0.46 556 | 2245 | 9
NWTn+lin
NWT,, TE,, IW,, 1.00, 1.00, 1.00, 0.57, | 660 | 21.65 | 8
NWT,.. . TEpui/s 0.45
NWT,, TE,, IW,, 1.00, 1.00, 1.00, 0.59,

NWT, 100 TEgrsm Wit o 0.46, 0.24 794 | 58 | 7
NWT,, TE,, IW,, 1,00, 1.00, 1.00, 0.58,

NWT,. 11 TEpui o 0.45, 0.20 078 | 406 | 7
NWTnJern

NWT,, TE,, IW,, 1.00, 1.00, 1.00, 0.69,

NWT,, 1 TEmetm TEpoajn 0.45, 0.28 563 | 803 | 7

One by one component is added and the information criterion and the chi-square statistic are
computed to determine which elements are independent. The component IW,;,, for i=1 must be
excluded from the state space vector since C is negative when the component IW,,, is

considered. Furthermore, when NWT,; ,, TE ;. for i=2 are considered C becomes negative,
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5.3. Residential water use models.

Five different models were fitted to the residential water use for the city of Mayaguez,
Puerto Rico. General identification approach was described in Chapter 4, and an example of
detailed model identification was presented in the previous section. Comments about model
fitting were omitted to avoid repetitions, similar identification and model interpretation were

presented in section 5.2.

5.3.1. The dynamic regression model for residential water use.

Model:
, , , [ B,
RW, = BoRW _ + P BW, ,+ B, RW, o+ ———+ .
R¥, 4 (re]+TE) 5.9)
+E§5R&W{l"2}+—@§ +;37Rfr?f+ Fe +a,
TE] TE?,

where the variables RW, TE, and RF, represent residential water use, average
temperature, and rainfall at time t, respectively, t is the time index given in months, and a, is a
white noise process.
Table 5.11 presents the estimates of the B parameters and some statistics to measure the

capabilities of the model.



Table 5.11. Parameter estimation (dynamic model)
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Parameter Estimate Prob>T
B3, 0.8246 0.0001
B3, -0.5472 0.0001
B, 0.4222 0.0009
B3 4261E10 0.0001
B3, 6.57E14 0.0001
B3 -7628.62 0.0299
B3 -6.58E14 0.0001
B3, 14.266 0.0156
B3 2.751E10 0.0001
MSE vMSE R? R adj.
|| 827183508 28760.8 0.4965 0.4480 "

It should be made clear that the estimates are significant at the 95% of confidence.



44

5.3.2. The ARIMA model for residential water use.

Model:

a
RW,. = u+ :
(1 “¢1B_¢Zﬁz _®3B 3)
where (5.10)
(E _‘@1 _'qbg _@;’)3)

ERW) = u

where RW, represents the residential water use, t is the time index given in months, a, is a

sequence of independent random variables with zero mean and constant variance. ¢’s and 0, are

parameters to be estimated from data. Estimates and statistics to measure the fitting capabilities

are exhibits in Table 5.12.

5.12. Parameter estimates (ARIMA model).

Parameter Estimate T Ratio
0, 204853.4 3.67
b, 0.8008 8.37
b, -0.46348 -4.17

b3 0.28144 3.01
AIC VMSE VMS, |

ll

1919.29 29665.9 40506.63 “




5.3.3. The transfer function model for residential water use.

Model:

where RW, is the residential water use, RT, rainfall, and TE, is the average temperature at time
t, t is the time index given in months, a, is a sequence of independent random variables with

mean zero and constant variance.

= 7 + T,
RW, = wg RF vw,,TE_ +

prediction capabilities are shown in Table 5.13.

a,

(1-6,8-6,87

Table 5.13. Parameter estimation {TF model).

(5.11)

Parameter estimation and statistics to test the fitting and

%Series Component Estimate T Ratio
RF, g | 1745.330 243
TE, 04, 6663.76 65.07
a, 0, 0.82413 8.2
o, -0.3057 -3.06
AIC VMSE vMS,
|| 1862.26 30511.2 31760.06
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5.3.4. The vector ARMA model for residential water use.

Model:

RW’; = 537@@@ +d1’r+0.8339é i,¢t-6
RF, = 6.618+4, ~0.18784,, , ~2.28584,
(5.12)
-4.25084, , - 1045294, ,+5.53914,, , +1.7744,, ,,
TE, = 7859+4,,+049334,, , +0.215944, , , +0.32554,  ,,

where RW, is the residential water use at time t, RF, is rainfall at time t, and TE, is the average

temperature at time t, t is the time index given in months, and [a,;, a,,, a,,]” hat is the residual

vector at time t. Parameter are significant at 95% confidence level. Fitting and prediction

capability of the model are shown in Table 5.14.

Table 5.14 Capabilities of the model (vector ARMA).

II AIC VMSE

VMS ||

P

" 1862.26 31544.16

29178.31 "
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5.3.5. The state space model for residential water use.

Model:

RF.4
TE,.;

RW,

{s+1}
RE a0

g
oy

£1

o o 1] EF, |
O 0 ’Fz,a TEU)
Fs,z F?F,S Fg,n, RW@)
E 42 o F a.4] _R-F(mm

1 o 0
o 1 o v
e o 1 P g1 (5-13)
a
Gam G4,2 ]

where RW, is residential water use at time t, TE, is the average temperature at time t, RF, is the

rainfall at time t, and t is the time index given in months, [a, , a,,, a;,]’ is a white noise random

vector with zero mean and a constant variance covariance matrix. Parameter estimation and

statistics to measure fitting and prediction capabilities are given in Table 5.15.

Table 5.15. Parameter estimation (State space model).

Parameter Estimate T value
F,4 0.8334 7.23
F,, -2593.7 -999
Fi, -690.31 -999
F,, 0.5285 6.24
Fi, 6040.7 999
F,. -0.1905 -4.37
F,s -0.8213 -7.005
Fi4 1.6605 27.87
Gy, 0.1241 2.86
Gy, 0.8927 6.81
AIC VMSE vMS,
" 2062.26 33711.36 33936.77 l
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5.4, Commercial water use models.

Five different models were fitted to the commercial water use for the city of Mayaguez,
Puerto Rico. General identification approach was described in Chapter 4, and an example of
detailed model identification is presented in section 5.2. Comments about model fitting are

omitted to avoid repetitions.

5.4.1. Dynamic model for commercial water use.

Model:

CW, = BCW,_+ E"z * BZ b B B W) B HC, yva,  (514)
CW., CW., CW.,

where CW, is the commercial water use at time t, NWC, is the number of workers at time t, and
TE, is the average temperature at time t, t is the time index given in months, and a, is a white
noise random process. Parameter estimation and statistics to measure prediction and fitting

capabilities are shown in Table 5.16.



Table 5.16 Parameter estimation (dynamic model).

49

Parameter Estimate Prob>T
B3, 0.7785 0.0001
B3, 7.26E13 0.0001
3, -1.09E14 0.0001
B, 7.75E13 0.0001
B3, 622.112 0.0026
{3 3.69E-08 (0.0013
B -6.6290 (.0020
MSE VMSE R VMS,.
|| 44764675 6690.6 0.6351 9706.79




5.4.2. The ARIMA model for commercial water use.

Model:
o ;A) R a,
16,5
where
2 B¢
Elew®) =y =
(I-¢

50

(5.15)

where CW,® is the transformed commercial water use at time t, the transformation parameter

A=-1, and t is the time index given in months, and a, is a sequence of independent random

variables, with zero mean and constant variance. Parameter estimation and statistics to test the

fitting and prediction capabilities are shown in Table 5.17.

Table 5.17 Parameter estimation (ARIMA model).

Parameter Estimate T Ratio
0, 0.247E-05 2.47
¢, 0.768852 11.82
AIC VMSE vMS,
|| 1685.11 7034.50 13498.57 "
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5.3.3. The transfer function model for commercial water use.
Model:
(1-BYCW, = 8+, (1-BNWCY + 0, TE,

(1-8B)1-9,,B% (5.16)
+ 3
A-6,2-0,8™

where CW, is the commercial water use at time t, NWC™ is the transformed number of workers
at the commercial area at time t, the transformation parameter A=-1, TE, is the average
temperature at time t, a_is a white noise process, and t is the time index given in months.

Parameter estimation, fitting and prediction capabilities are presented in Table 5.18.

Table 5.18. Paramecter estimation (TF model).

Series Component Estimate T Ratio
NWC, Wy ) -0.5947E09 -2.95
TE, Wy, 635.25 2.31
0, -110559.4 -2.29
0, -0.8653 -7.34
a (/38 -0.3301 -3.42
0, -0.8479 -10.09
0., -0.2658 -2.41

AIC VMSE VMS

P

u 1641.47 6561.6 7152.66




5.4.4. The vector ARMA model for commercial water use.
Model:

CW = 10681+0.49734,, | -0.08964, | +0.32054,

+031674,, -0.38674,, , +0.07214,, |

3,-1

NWCP = -0.0064NWCY) -0.1346, , , +0.08344, , ,
005314, , ¢ +0.05894,, - 0.22724,,
+0.07934,,_,, -0.0801a, ,_, +0.24434, _,,

5|
i

.

78.63 +0.59834, , , +0.81084,, ,

-0.33944,,  +0.51694,, ,-14644,,

&5
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(5.17)

where CW® is the transformed commercial water use at time t, NWC® is the transformed

number of workers at the commercial areaz at time t, the transformation parameter A=-1, TE, is

the average temperature at time t, and t is the time index given in months, [a,,, a,, a;,]" hat is

the residual vector. Parameters are significant at the 95% of confidence level. Table 5.19 shows

the fitting capabilities of the model.

Table 5.19. Fitting capabilities.

AIC VMSE vMS,

2041.47 12139.16 13421.91
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5.4.5. The state space model for commercial water use.

Model:

NWC, .1 F, F, O NWC, 241
TEey | =] 0 F,, © TEy |+ By 001 (5.18)
CIW(?;}H ¢ F 3.2 F 33 CW’}&? 3001

where CW ™ is the transformed commercial water use at time t, the transformation parameter is

-1, NWC, is the number of workers at the commercial area at time t, TE, is the average

temperature at time t, [a,,, a,,, a,,]" is the white noise random vector with zero mean and a

constant variance covariance, and t is the time index given in months, Parameter estimation and

fitting performances are presented in Table 5.19.

Table 5.19. Parameter estimation (state space model).

Parameter Estimate T value
Fi, 0.9295 28.05
F, 34.434 33.82
F,, 0.7553 11.88
Fy, -3E-05 -2.28
Fs, 570.98 559.4

F

0.7623

11.69

3.3
l AIC VMSE VMS, |

“ 2018.10

7388.91

8299.19

|
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5.5. The best models to predict Mayaguez water use.

Three variables were studied: industrial, residential and commercial water use and five
models were fitted to each monthly water use. Thus, there is a total of fifteen different models.
Among those fifteen models three models were selected to represent best the underlaying
variables. Fitting and prediction capabilities of each model were measured and the ones that offer
the best performances were selected.

Fitting performances is measured by means of the VVMSE and prediction capability by

means of V' MSP. These criterion are defined as follows:

" M
1 = 2 I 2
MSE = — €; and MS = — % e
n-k % M @
(5.19)
where
€ = _V,:_j;i and eg(p} = y;'_j;i(p}’

where y, is the observed value, y; hat is the one-step-ahead forecast computed at origin i
(i=1,...95); y,(p) hat is the forecast with a lead time p (p=l,...,12) made at origin i=84, n=96,
M=84, and k is number of parameters involved in the model.

The statistic MSE measures how well the model fits to the given data, and the statistic
MS, measures how well the model predicts the underlying variable. Table 5.20 shows the

prediction and fitting capabilities of the fifteen identified models.
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Table 5.20. Fitting and prediction capabilities.

Models Resid. W. Commer. W. Indus. W. ||
VMSE | vMS, | VMSE | vMS, | VMSE | v'MS, |
Dynamic Reg. 28760 | 23319 | 6690 | 9706 | 34018 | 21186
ARIMA 29665 | 40506 | 7034 | 13498 | 31500 | 39445
Transfer Func. 30511 31760 | 6561 7152 | 30653 | 21922
Vector ARMA 31544 | 29128 | 12139 | 13421 | 39668 | 31322
State Space 33711 33936 | 7388 | 8299 | 57800 | 39063

The model which exhibits the best fitting and prediction capabilities for a particular
variable is the one that shows the minimum MSE and the minimum MS_. Based on this rule the
best models are presented in Table 5.21

Table 5.21. The best models.

Times series The best model Equation
Residential water use Dynamic Regression (5.9)
Commercial water use Transfer Function (5.16)

Industrial water use Transfer Function (5.6)

5.6. Residual analysis for the best fitted models.

Residuals analysis was conducted on the best models. The purpose of this analysis is to
test whether or not the postulated assumptions on the building models are satisfied. Thus,
residuals analysis involves to test Whether-or not residuals follows a normatl distribution, with zero

mean and constant variance. Residuals also must be independent and should not exhibit outliers.
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5.6.1. Residuals from the residential water use model.

The best model for residential water use is given by the dynamic regression model (5.9).
Residuals from this model were computed and the following results were found. (1) The Durbin-
Watson statistic was 1.927. This statistic indicates that residuals do not present problem of
autocorrelation of the first order. (2) Kolmogorov-Smirnov test was used to test normality. The
statistic of Kolmogorov-Smimov was 0.118 and the critical value is 0.12657. Since the statistic
is smaller than the critical value, normality cannot be rejected at the 95% confidence level. This
result was also confirmed with the normal probability plot, which is exhibited in Figure 5.7. (3)
A rough check for outliers was made by examining the standardized residuals, since standardized
residuals are smaller than +- three standard deviation it can be conclude that there are not

potential outliers.
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5.6.2. Residuals from the commercial water use model.,

The assumptions made on the transfer function model building were checked by studying
the autocorrelation and cross-correlation functions:

(1) Autocorrelation check. Figures 5.8, and 5.9 show the sample autocorrelation and
partial autocorrelation functions, respectively. These figures show that residual behave as a
sequence of independent random variables. The Portmantean test also confirms this result. The
Portmanteau statistic is 12.34 and the critical value at the 95% level of confidence is 31.41.
Therefore, there is not enough evidence to reject the hypothesis that residuals behave as a white
noise series. This fact show evidence that one of the major assumptions made on the error term

is satisfied.
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(2) Cross-correlation check.

Another important assumption made on model building was that errors must be
independent with respect to the input variables. Tables 5.22 and 5.23 show the sample cross-
correlation function between residuals and the input variables. These tables indicate that residuals
arc independent of the input variables. This result also are confirmed with the Portmanteau test.
The Portmanteau statistic is 6.062 and the critical value at the 95% level of significance is 19.67,
i.e., it can be conclude that residuals are independent of NWC variable. Furthermore, the
Portmanteau test for the temperature reveals the following results. The Portmanteau statistic is
4.015 and the critical value is 19.67 at 95% of level of significance; hence, residuals are also
independent of temperature. Therefore, the developed transfer function model for the commercial

water use is a satisfactory model.

Table 5.22 Cross-correlation (residuals vs NWC)

Lag Cross Stand. T Lag Cross Stand. T
Correl. Error. Ratio Correl. Error. Ratio
0 -0.027 0.11 -0.25 0 -0.027 0.11 -0.25
1 -0.147 0.11 -1.33 -1 -0.068 0.11 -0.62
2 0.062 0.111 0.56 -2 0.205 0.111 1.84
3 0.05 0.112 0.44 -3 0.064 0.112 0.57
4 0.03 0.113 0.26 -4 -0.055 0.113 -0.49
5 -0.045 0.113 -0.39 -5 -0.14 0.113 -1.24
6 -0.1 0.114 -0.88 -6 0.058 0.114 0.51
7 -0.031 0.115 -0.27 -7 -0.026 0.115 -0.22
8 0.042 0.115 0.36 -8 0.015 0.115 0.13
9 0.125 0.116 1.07 -9 0.028 0.116 0.24
10 0.013 0.117 0.11 -10 0.111 0.117 0.95
11 0.021 0.118 0.17 -11 -0.064 0.118 -0.54
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Table 5.23 Cross-correlation (residuals and TE).

Lag Cross Stand. T Lag Cross Stand. T
Correl. Error. Ratio Correl. Error. Ratio
0 -0.001 0.104 -0.01 0 -0.001 0.104 -0.01
1 0.024 0.104 0.23 -1 0.011 0.104 0.1
2 0.008 0.105 0.08 -2 -0.173 0.105 -1.65
3 -0.057 0.105 -0.54 -3 0.024 0.105 0.23
4 -0.068 0.106 -0.65 -4 0.007 0.106 0.07
5 -0.058 0.107 -0.54 -5 -0.044 0.107 -0.41
6 -0.013 0.107 -0.12 -6 -0.094 0.107 -0.88
7 0.075 0.108 0.69 -7 0.023 0.108 0.21
8 0.058 0.108 0.54 -8 -0.007 0.108 -0.06
9 0 0.109 0 -9 0.047 0.109 0.43
10 0.092 0.11 0.84 -10 0.036 0.11 0.33
11 -0.096 0.11 -0.86 -11 -0.142 0.11 -1.28

5.6.3. Residuals from the industrial water use model.

The assumptions made on the transfer function modeling were checked on the
autocorrelation and cross-correlation functions:

(1) Autocorrelation check. Figure 5.10 shows the sample partial autocorrelation function.
This figure shows that residual behave as a sequence of independent random variables. The
Portmanteau test also confirms this result. The Portmanteau statistic is 12.45 and the critical
value at the 95% level is 32.67, therefore, there is not enough evidence to reject the hypothesis
that residuals behave as a white noise series. This fact show evidence that the one of the major

assumption made on the error term was satisfied.



6l

Estimated Fartial Autocorrelations

AL PSSR ISR MR
0.6 R
- f
=S e . i
& . :
_9 a ﬂ il ﬂﬂuﬂUEH r-| T 0 n
e U
[ .
S S VO e
U B
P BT ......................
T
| 1 1 L 1 |
0 5 10 15 20 25

lag

Figure 5.10 Partial autccor. function

(2) Cross-correlation check.

Another important assumption made on model building is that errors must be independent
with respect to the input variables. Tables 5.25 and 5.26 show the sample cross-correlation
function between residuals and the input variables. These tables indicate that residuals are
independent of the input variables. This result also is confirmed with the Portmanteau test. The
Portmanteau statistic is 5.909 and the critical value at the 95% level of significance is 19.67, i.e.,
it can be conclude that residuals are independent of NWI variable. Furthermore, the Portmanteau
test for the temperature reveals the following results. The Portmanteau statistic is 15.564 and the
critical value is 19.67 at 95% of level of significance; hence, residuals are also independent of
temperature. Therefore, the developed transfer function model for the industrial water use is a

satisfactory model.



Table 5.25 Cross-correlation (residuals vs NWI)

Lag Cross. Stand. T Lag Cross. Stand. T
Correl. Error Ratio Correl. Error Ratio
0 -0.012 0.115 -0.1 0 -0.012 0.115 -0.1
1 0.024 0.116 0.2 -1 -0.171 0.116 -1.47
2 0.028 0.117 0.24 -2 0.102 0.117 0.87
3 -0.169 0.118 -1.43 -3 -0.001 0.118 0
4 -0.107 0.119 -0.9 -4 -0.071 0.119 -0.6
5 -0.057 0.12 -0.48 -5 0.125 0.12 1.04
6 -0.085 0.12 -0.71 -6 0.193 0.12 1.61
7 -0.108 0.121 -0.89 -7 -0.01 0.121 -0.08
8 0.039 0.122 0.32 -8 -0.109 0.122 -0.89
9 0.073 0.123 0.59 -9 -0.234 0.123 -1.9
10 0.022 0.124 0.18 -10 (.005 0.124 0.04
11 -0.027 0.125 -0.22 [ -11 0.003 0.125 0.5
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Table 5.26 Cross-correlation (residuals vs TE)

Lag Cross. Stand. T Lag Cross. Stand. T
Correl Error. Ratio Correl Error. Ratio
0 0.271 0.115 2.35 0 0.271 0.115 2.35
1 0.193 0.116 1.66 | -1 0.03 0.116 0.25
2 -0.014 0.117 012 | -2 0.136 0.117 .16
3 -0.107 0.118 091 -3 0 0.118 0
4 -0.141 0.119 -1.19( -4 0.135 0.119 1.13
5 -0.069 0.12 -0.57 1 -5 0.05 0.12 0.42
6 0.067 0.12 0.56 | -6 0.023 0.12 0.19
7 -0.037 0.121 -0.31 -7 0.023 0.121 0.19
8 -0.162 0.122 -1.33 | -8 0.044 0.122 0.36
9 0.106 0.123 0.86| -9 0.068 0.123 0.55
10 0.016 0.124 0.13| -10 -0.226 0.124 -1.82
11 -0.113 0.125 -091 1 -11 0.094 0.125 0.75

5.7. Mayaguez monthly water use forecasts.

(1) Residential water use forecasts.

The forecasts for residential water use can be easily computed by using the following
difference equation:

RW,=0.8246 «RW, | ~0.5472+RW, ,+0.4222 RV _, +4.2615E0I0IRW,
+6.55757TE14)(TE, +TE) 1628 62+ RF (5.20)
-6.5T44EI4TE. +14.26+RF. +2 7519E1G/TE],

using data exhibit in Appendix C forecasts for 1992 were computed and results are shown in

Table 5.27.
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(2) Commercial water use forecasts.

Forecasts for commercial water use can be easily computed by using the following

equation:

CW, = ~110559.4+0.1347«CW,_ +0.535«CW,_, +0.3302+CW,_,
+0.59476E09+NWC " -0.08014E09 +NWC, ) 0.3 18256 EOF+NWC,")

~0.19638GE0F+NWC ") 163526+ TE+549.71+TE,_, +209.73+TE, _,
+0.8479%4,  +0.2659%48, , +0.2254*8,

(5.21)

where NWC® is the transformed number of worker at the commercial area at time t, the
transformation parameter equal to -1, CW, is the commercial water use at time t, TE, is the
average temperature at time t, t is the time index given in months, and a, hat are the residual at
time t. Using data exhibit in Appendix C forecasts for 1992 were computed and results are
shown in Table 5.27.

(3) Industrial water use forecasts,

Forecasts for industrial water use can be easily computed by using the following equation:

WY = 0.9638 4 IWL ~0.3752 AW +0.3615 «IW oy ~0.468 [0,
Q4509 £ TW D 5 -0 1756 K IW oy +0.1692 +IW ooy 5 ~0.151TEQ7 « NWE
+2GT8TS1+NWI,-2025577«NWI, _, +1117667+NWI,_, -548441 xNW],

{e-2) -3 ()]
~TI0C15«NWY . +1384088 «NWT,_ .., ~93C4AB0+NWT,,
r-12) -13) {t-14) (5 22)
+523105+NWI,_  ~256657«NW, o ~0.11654E1 1 +TE_, -
+11257 16900 TE(nS) +1069841120% ?E(I—SJ - 1GTEO02S00 TE(!_,',)
+584411520+7E,, ) ~563072400+TE,, , +527282460+TE,,_,,
+523610160+TE,,_,, -504459360+TE, o +273514560+TE,,

~263545920+TE,,_,,,
where IW ™ is the transformed industrial water use at time t, the transformation parameter is 2,
NWI, is the number of workers at time t, TE, is the average temperature at time t, and t is the

time index given in months. Using data exhibit in Appendix C forecasts for 1992 were computed



and results are shown in Table 5.27.

Table 5.27 Monthly water use forecasts.

Month Residential Commercial Industrial
Forecasts Forecasts Forecasts
(m’) (m?) (m’)
01/92 551,703 107,600 263,400
02/92 536,909 104,400 265,100
03/92 526,909 97,980 274,100
04/92 530,820 96,980 275,000
05/92 540,546 102,400 266,700
06/92 544,369 103,200 247,800
07/92 546,240 102,900 217,300
08/92 547,633 103,500 208,600
09/92 549,777 104,400 174,800
10/92 548,170 104,600 181,200
11/92 546,126 103,300 194,400
12/92 541,413 103,600 199,400
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6. CONCLUSIONS AND RECOMMENDATIONS.

A sampling procedure provides enough information to derive a linear and a nonlinear
econometric model to express the residential water use for the city of Mayaguez, Puerto Rico.
The nonlinear model has exhibited better prediction capabilities. It was identified that the
following variables help in explaining the residential water use: number of automobiles, number
of people, annual income, and garden area in each household.

Tt should be noted that econometric models still reveal a poor coefficient of determination;
however, these coefficients are much better than the model found by Guilbe (1969). Thus, if a
further study would be conducted, it is recommended that the sample size should be increased
and at least four observation should be taken from each house.

Fifteen models were developed to represent the stochastic behavior of residential,
commercial, and industrial water use. These models have the capability to obtain water use
monthly predictions. Out of these fifteen models three difference equations were selected to
express the underlying water use variables. Thus, the dynamic regression model is the model that
best represents the stochastic behavior of residential water use. The transfer function model
shows better prediction capabilities and fitting conformance to express both the commercial and
the industrial water use.

The rapid growth of Mayaguez Puerto Rico cause sever strains on the municipal water
supply system. To develop a rational urban growth plan it is necessary to estimate the water need
for either new urbanizations or new industrial parks. Increasing interest has been raised in

determining the urban water needs. This interest has resulted from the necessity to avoid future
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water shortages. An adequate potable water supply is a primary factor in the well-being and
economic progress of the city of Mayaguez, Puerto Rico. Model scope is limited to the city of
Mayaguez. An extension to other parts of Puerto Rico may require to implement the sampling
procedure and/or update the derived models to the current data. Approximate prediction may be

obtained from the Mayaguez models, after using the appropriate input values.
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Appendix A: Questionnaire,

Universidad de Puerto Rico
Mayaguez, Puerta Rico
Desarrollo de Técnicas que permiten predecir
el Consumo de Agua para Planificacién Urbana

Fecha __/__/

ner_
Identificacion del Area Nombre
a) Sector Direccién
Teléfono
2) ¢ Cuantas personas viven 6) ¢ Cuéantos baiios con ducha hay
en la casa ? en la casa ?
a) uno a tres: () a) cero ()
b) cuatro a seis () b) uno ()
¢) sicte a diez () c) dos ()
d) once o mis {) d) tres ()
¢) cuatro 6 més ()
3) ¢ Es usted propietario
de la casa? 7) é Cudntos baiios sin ducha hay en
en la casa ?
a) Si () a) cero ()
b) No () b) uno ()
. c) dos ()
4) & Cuil es su ingreso familiar ? d) tres ()
a) menos de $1000 ( ) ) cuatro ¢ més ()
b) $1001 a $5000 ()
¢) $5001 a $15000 ( )
d) $15001 a $30000 ( )
e) $30000 6 mis ()
5} & De dénde proviene el agua 8) é Usa fregadero en la cocina ?
que usted consume ? a) Si ()
a) Acueducto Piblico () b) No ()
b) Pozo privado ()
¢) Cisterna ()
d) Otros ()

71



9) & Coémo lava la fopa ?
a) a méquina ()
b) en pileta ()
10) ¢ Tiene jardin en su casa ?
a) Si ()
b) No ()

11) é Con qué frecuencia riega

el jardin ?

a) Diario ()
b) Cada 3 dias ()
¢} Semanal ()

~ 12) ¢ Cuél es el drea aproximada

del jardin ? _

a) 16 m* 6 menos ( )
b)l61m?*a2Zlm? ( )
€)25.1m*a3fm? ()
d)35.1m?ad48m? ()
e)481m*6mis ()

13) ¢ Cuéntos automéviles posee ?

a) cero ()
b) uno ()
¢)dos 6 més ( )
14) & Con qué frecuencia lava

el carro 7

a)semanal ()
b) quincenal ( )
¢)mensual ( )

13) ¢ Tiene piscina ?

a) Si ()
b) No ()

16) ¢ Con qué frecuencia cambia el agua
de la piscina ?
a) cada 3 meses (
b) cada 6 meses (
c) cada 9 meses
d) anual (

17) & Tiene animales en su casa ?
a) Si ()
b) No ()

18) ¢ Cudnto paga usted en promedio
por el servicio de agua ?

a) menosde $10 ()
b) $10 a $15 ()
c)$15a%20 ()
d)$20a830 ()

L)

¢) $ 30 6 mis
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19) ¢ Qué tiempo lleva construida su casa ?

a) 0 a 10 afios - ()
b) 10 a 20 afos ()
c) 20 a 30 afios ()
d)30afiosédmis ()
¢) nao sabe ()

20) ¢ En cudnto estima el valor de su
propiedad ?

Observaciones :




Appendix B: Socioeconomic data.

Water U.
(m)
0.950
0.267
0.516
0.916
1.000
0.433
0.209
0.800
0.868
0.912
0.433
0.367
0.257
0.197
0.288
0.754
0.067
0.426
1.410
0.733
0.377
0.525
0.279
0.534
0.574
0.574
1.006
0.178
0.217
0.176
0.262
0.633
0.525
0.5639
0.902
0.426
0.900
0.733
0.316
0.916
1.185
1.050
0.650
0.476
0.985
1.405
0.683
0.835
0.988
0.755
1.438
0.920
1.000
1.083
0.534
1.076
0.754
0.850
0.762
2.300
0.265
1.700

N. Peop. Income
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Appendix B: Secioeconomic data.

Water U.
(m’y
0.852
0.516
0.240
G.720
0.511
1.801
0.902
0.886
0.588
0.252
0.524
0.900
0.237
1.954
0.526
0.588
0.412
1.048
0.518
0.548
0.738
0.308
1.416
0.940
0.189
B.205
0.422
0.132
0.213
0.525
0.235
0.167
0.383
0.267
0.681
0.334
0.147
0.552
0.131
0.213
1.689
0.230
0.295
0.688
0.165
0.776
0.811
0.345
0.340
0.377
0.703
0.751
0.634
0.476
1.279
0.967
0.436
0.936
1.792
0.905
0.520
0.555
0.6b44
1.341

N. Peap. Income
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RW
(' /m.)
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590143.5
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573065.5
573065.5
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540644
553992.5
553992.5
552504
552504
545881
545881
553553
553553
497784
497784
538863 .
538863
603203.
603203.
518383.
518383,
507138.
507138.
518452.
518452.
629058,
529098,
491652
491652
518160
518160
566678.5
566678.5
509998.5
509998.5
533200
533200
582653.5
582653.5
479377
479377
569806.5
569806.5
507632
507632
445307.5
445307.5
461076
461076
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Appendix C: Water use and climatological data

RF

(in.)

1.95
3.13
0.88
1.99
11.74
10.95
10.5
6.96
18.31

7.1
5.55
1.68
2.12
5.27
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10.69
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7.23
13.49
10.92
17.22
.58
.34
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15
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1.2
1.49
2.39
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B.3
14.56
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(m’/m. )
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Appendix C: Water use and ciimatological data

RF
(in.}
10.29
5.3
8.26
8.77
16.03
8.83
2.37
7.95
3.99
1.27
0.54
2.78
5.01
1.83
5.1
8.97
7.59
1.1
14.93
14.42
3.52
0.91
0.66
2.16
5.69
3.38
?.76
3.04
7.78
4.98
?.09
2.25
2.81
0.51

TE oM
¢°F) (m'/m.)
747 90742
75.8 90742
78.5 82995
7B.3 82995
81.44 98358
81.5 98368
81.7 102320.
80.8 102320,
79.5 97204.
76.9 97204.
75.7 92741,
75 92741.
74.7 91945,
78B.5 91945,
80.7 93012,
82.2 93012,
82 96642
82.7 96442
81.8 95661
81.7 95661
79.5 10089
76.6  1008%%
75.7 107662.5
76.3 107662.5

WU WU W LA LT T A
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78.1 88835.5
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80.7 110826.5
79.3 107536.5
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(x1000}
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3600
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200213.5
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179854
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Appendix D: Plots of data used
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Figure Dl.

Residential water use
(Jan/1984-Dec/1991) .

90

oo
(=)

70

/
LU

n

N
ﬂ

: MJ\
A%

M

I

ST P T VPR CCT Ty (O T T T T T T T A T T TR O T T T e T T T e T
1 6 11162126 37 36414651 56 61 66 71 76 81 85 91 96

Tiempo (meses)

Figure D2.

Commercial water use
(Jan/1984-Dec/1991) .
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Figure D3. Industrial water use
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