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A STATISTICAL APPROACH TO URBAN STORMWATER DETENTION

by
Rafael I. Segarra

(ABSTRACT)

A statistical model has been developed to study the
long-term behaviour of a stormwater detention unit. This
unlt stores a portion of the incoming runoff, corresponding
to the empty space available in the unit, from which runoff
is pumped to a treatment plant. The objective 1s to avoid,
as much as possible, the discharge of untreated runoff to
recelving bodies of water.

The model was developed by considering the arrival of
independent runoff events at the urban catchment. The
process varlables of event depth, duration, and interevent
time. were treated as independent, identically distributed
random variables. A storage equation was formulated from
which the probability of detention unit overflow was obtain-
ed. With this distribution it was possible to define the
trap efficiency of the unit in terms of the long-term
fraction of the runoff volume trapped by the storage unit.

The trap efficiency expressions define storage/
treatment 1isoquants, which represent the combinations of
storage capacity, treatment rate, and the sewer system
runoff trapping capacity, which provide a fixed level of

runoff control.

ii



A pollutant load model was also formulated, based on a
first-order washoff model. This model was used to define
pollutant control isoquants.

Optimal values of the required storage capacity and
treatment rate were obtalned by treating the isoquants as
production functions. Applying the results of production
functlon theory, a cost minimization problem was solved for
the value of the storage capacity and treatment rate, for
prescribed runoff and pollutant trap efficiency levels.

The results obtained with the statistical model
compared well with results obtained from major simulation
models.

The statistical approach offers an advantage in that no
simulation is required to obtain the isoquants, as the
expressions are analytical, thus greatly simplifying the
optimization process. Also, the evaluation of the storage
unit pollutant trap efficiency can be easily evaluated for

any type of pollutant whose washoff rate is known.
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CHAPTER I.

1.1 Introduction

Urban Stormwater Management has, in recent years, been
recognized as an independent field within the water
resources environment. This has been brought about by the
reallzation of the relative uniqueness of the urban runoff
process, both in terms of quantity and quality. The major
feature of the urban catchment condition is its high degree
of imper viousness. A large percentage of the rainfall
volume becomes available as runoff, as opposed to natural
watersheds. The runoff 1s routed through man-made channels
to a point of discharge. In its flow over the urban
catchment the runoff becomes the transport mode of a wide
varlety of substances made available on the surface through
human activity. These substances, through physical/chemical
transport processes, are borne in the runoff and discharged
at the stormwater outlets. A schematic representation of
the process 1s shown in Figure 1.1.

In the past Urban Stormwater Management received little
attentlon beyond that associated with stormsewer design.
With the increase 1in size of the urban locations and the
advancement of industry and technology the environmental
problems associated with heavily developed and industrial-
ized catchments have become more numerous and of a greatly
increased complexity. The major Impacts assoclated with

urban development are increased runoff volumes, increased
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runoff rates, and deterioration of the water quality.

The water-borne substances that are transported through
the gutter/stormsewer system are eventually discharged to a
receliving body of water, be it a lake, river, or ocean.
These discharges inflict what is called a "receiving water
impact". The recelving water impact may be negligible if
the assimilation capacity of the body of water is large with
respect to the nature of the pollutant load, or it may be
disastrous if the stream cannot properly assimilate the
pollutant load it receives. Assimilation in this context
refers to the capacity of the receiving water to reduce,
through natural processes, the concentration of a gliven
substance to a certain level. This level 1s referred to as
a water quality standard. Public law requires standards of
acceptable water quality for natural bodies of water. In
the past these standards were concerned mainly with control-
ling point discharges. Point discharges are those occurr ing
from specific source locations such as treatment plants.
With the development of environmental legislation, such as
PL 92-500, attention has been also focused on nonpoint
pollution. Nonpoint, or Areawide, pollution emanates from
source areas and 1s borne by wind and water. The urban
water quality problem falls in the nonpoint pollution cate-
gory.

With the development of urban nonpoint pollution as-
sessment projects, most notably the so called 208 Assessment

Projects, and the execution of water guality surveys, aware-



ness ensued of the enormity of the water quality problem
assoclated with urban centers throughout the nation. It has
been found that in some locations the impact from nonpoint
urban pollution exceeds that of municipal sewage. As an
1llustration Tables 1.1 and 1.2 compare the water quality
from a combined sewer and stormwater for a glven urban loca-
tion. It can be seen that the potential for a greater
impact, especially for solids, is there.

Accompanying the realization of the existence of the
problem came the need to adequately address it. The
practice of using combined sewer systems was the simplest
approach. The approach is found to be lacking when
considered for modern urban development. Larger cities
provide larger runoff volumes to handle. These, when routed
through combined sewers to a treatment plant will produce
larger overflow wolumes with a large pollutant load into the
receiving body of water. The use of large treatment plants
1s also a possibility. However, these are very costly and
it is not economical to design them for zero overflow.
Another factor working against the use of simple combined
systems 1is the necessity of awiding untreated municipal
discharges to receiving waters, even in diluted form. One
of the best alternatives developed thus far is the use of a
separate stormsewer system combined with a storage/release
system.

In separate stormsewer systems the conduits will only

convey stormflow. The stormflow 1s conveyed to a storage



TABLE 1.1 Characteristics of Combined Sewer Overflows

Characteristic Range of Values
BOD5 (mg/1) 30-600
TSS“(mg/1) 20-1,700

TS (mg/) 150-2,300
Volatile TS (mg/1) 15-820

pH 4.9-8.7
Settleable solids (ml/1) 2-1,550
Organic N (mg/1) 1.5-33.1
NH_N (mg/1) 01l.12.5
Soluble PO, (mg/1) 0.1-6.2
Total Coli#orms (number/100 ml) 10,000-90 x 10
Fecal coliforms (number/100 ml) 20,000-17 x 106
Fecal streptococeil (number/100 ml) 20,000-2 x 10

From Roesner (1982)

TABLE 1.2 Characteristics of Urban Stormwater

Characteristic Range of Values
BODS (mg/1) 1-700
COD“(mg/1) 5-3,100

TSS (mg/1) 2-11,300

TS (mg/1) 450-14,600
Volatile TS (mg/1) 12-1,600
Setteable solids (ml/1) 0.5-5,400
Organic N {(mg/1) 0.1-16

NH.N (mg/1) 0.1-10
Sofuble PO, (mg/1) 0.1-125
Chlorides Emg/l) 2-25,000%
0ils (mg/1) 0-110
Phenols (mg/1) 0-0.2

Lead (mg/1) 0-1.9 6
Total coliforms (number/100 ml) 200-146 x 106
Fecal coliforms (number/100 ml) 55-112 x 106
Fecal streptococci (number/100 ml) 200-1.2 x 10

8With highway delcing.

From Roesner (1982)



device where it fills available storage capacity. From the
device water is withdrawn to a treatment plant for treatment
along with the municipal discharge. If the storage capacity
is exceeded by the incoming volume then a storage oﬁerflow
will occur, the overflow going to a receiving body of water.
In areas with already existing combined sewers it is usually
not economical to construct a new separate system. In these
cases storage capacity 1s made available "in line", or
within the sewer itself.

Different combinations of storage/treatment devices can
be constructed. In some situations the storage device will
also function as a treatment device, either being the main
source of runoff treatment, or providing preliminary treat-
ment before further processing at the main treatment facili-
ty. The particular setup at a given site will be a function
of engineer ing and economic considerations.

The major costs associated with the implementation of a
stormwater management program are those related to the cons-
truction of facilities such as the sewer system, the storage
units, and the treatment plant. Additional related costs
involve the cost of treatment and operation and maintenance
costs. These costs are very high. Cost estimates for up-
grading the water quality using best available technology
run into the billions (Labadie, 1976). It is therefore
imperative that the design of water management systems be
undertaken 1n an efficient manner. While sounding like an

understatement this observation has great implications for



the planning process. It compels the planning process to
conslder technigues which yield "optimal" solutions to mana-
gement problems. Optimality is a condition in which the
system is designed to fulfill its required function at the
least possible cost, or the greatest possible benefit.

There are two major general outlooks on the stormwater
management problem. In one the system 1s viewed from the
point of view of a deterministic formulation. In the other
the system 1s viewed in terms of statistical/stochastic pro-
cesses. The former approach assumes pertect information.
The random behaviour of inwlved variables 1is not consider-
ed. The latter considers all possible realizations of
events, each with a given probability of occurrence.

This work will concentrate on the development of a
statistical model for urban stormwater management. The main
objectives of the work are the following:

a) to develop a statistical model in order to assess
long-term bahaviour of an urban storage/release
system, accounting for the randomness associated
with the occurrences, durations, and volumes of
rainfall /runoff events;

b) to obtain a probability distribution of the over-
flows obtained from stormwater storage devices,

c) to obtain, in an optimal fashion, the storage ca-
pacity and the treatment/release rate necessary

to control pollution from stormwater,



d) and to obtain within this formulation, a closed-
form solution in order to gain flexibility for the
planning process, and to facilitate the incorpora-
tion of these techniques into larger and more
comprehensive land use planning frameworks.

The remainder of this chapter will present a review of

related technigues that address the urban stormwater manage-

ment problem within the categorizations of this section.

1.2 Deterministic Models for Storage/Release Systems

A relatively large number of models and techniques
exist for designing stormsewer systems. These are to be
differentiated from those models specifically designed tor
the planning of storage/release systems. Representative of
modern design models are those developed abt the University
of Illinois [see Terstriep and Stall (1974)., Yen et al.
(1976), and Yen (1986), which involve physically-based
formulations and include optimization as a design tool. A
class of detention storage design models are those that
conceptualize the system in a relatively simple fashion
while still maintaining various essential features of the
process. These are not generally concerned with an accurate
hydraulic description of catchment flow but are preoccupied
with hydrologic aspects, such as the rainfall-runoff trans-
formation, abstractions, and travel times. Representative
of the latter approach is the work of Ordon (1974), and

Smith and Bedient (1980).



the planning process. It compels the planning process to
consider techniques which yield "optimal" solutions to mana-
gement problems. Optimality is a condition in which the
system 1s designed to fulfill its required function at the
least possible cost, or the greatest possible benefit.

There are two major general outlooks on the stormwater
management problem. In one the system is viewed from the
point of view of a deterministic formulation. In the other
the system 1s viewed in terms of statistical/stochastic¢ pro-
cesses. The former approach assumes pertfect information.
The random behaviour of involved var iables is not consider-
ed. The latter considers all possible realizations of
events, each with a given probability of occurrence.

This work will concentrate on the development of a
statistical model for urban stormwater management. The main
objectives of the work are the following:

a) to develop a statistical model in order to assess
long~-term bahaviour of an urban storage/release
system, accounting for the randomness associated
with the occurrences, durations, and volumes of
rainfall /runoff events;

b) to obtain a probability distribution of the over-
flows obtained from stormwater storage devices,

c) to obtain, in an optimal fashion, the storage ca-
pacity and the treatment/release rate necessary

to control pollution from stormwater;



An extensive analytical study of urban stormwater
storage/release systems has been conducted by Medina et al.
(1981). Medina's model describes the transient response of
storage/treatment systems to variable forcing functions of
flow and concentration, for completely mixed systems of
constant and . variable volumes, and for one-dimensional
advectlve-dispersive systems. The model is based on a solu-
tion to the conservation of mass equation, accounting for
the movement, decay, storage, and treatment of stormwater
pollutants and dry weather flows through natural and eng i-
neering transport systems. A limitation of the model 1is
that 1t was developed using a linear relationship between
outtflow and basin wvolume. Also, the pollutant and runoff
input functions are assumed to be completely defined by the
user .

Next, the two most popular, and widely used planning
models-the Storage, Treatment, Overflow, Runoff Model
(STORM), and the Stormwater Management Model (SWWM) will be
discussed.

These models have explicit storage/release formula-
tions. They have the capability of working with continuous
rainfall records and thus can simulate a large number of
events. This 1s a very useful capability because it allows
for the statistical analysis of the simulation results,
which 1n turn can be compared with the results obtained from

statistical models.
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The present study will compare the results obtained to
those obtalned from the statistical analysis of simulation

results.

1.2.1 The U.S. Army Corps STORM Model

The STORM model (U.S. Army Corps of Engineers, 1977)
was designed to generate long-term runoff and pollutant load
records with a continuous long-term hourly rainfall record.
The hourly runoff 1s, in turn, routed to a storage/treatment
system. The interaction Dbetween storage, treatment, and
release used in STORM is depicted in Figure 1.2.

To generate runoff the STORM model can use the Coeffi-
clent method or the Soil Conservation Service Curve Number
technique. The most popular use of the model is with the
Coefficient method. With the Coefficient method the hourly
rate of runoff is computed by multiplying the difference
between the actual precipitation and depression storage by a
composite runoff coefficient.

The generated hourly runoff sequence is routed to the
appropr late device. Runoff exceeding the maximum treatment
rate is stored for release at a later time. If the storage
capacity 1is exceeded, the excess overflows directly into the
recelving water. When runoff abates to the point where the
treatment rate 1is no longer exceeded, the storage unit is
drained at a rate equivalent to the difference between the
maximum treatment rate and the runoff rate.

In STORM an overtlow event is defined as that starting
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when overflow occurs and ending when the system can again
handle the runoff. It is implicitly assumed that the
storage capacity can be filled in one hour, and that the
drainage system has the capacity to convey even the largest
runoff produced.

The quality aspects are handled by assuming that the
pollutant washot'f is proportional to the remaining quantity.
This corresponds to a linear first-order model. The manner
in which STORM handles the runoff quality considerations is
in general use. It is also utilized by the SWWM model, to
be described next. STORM has no provision for simulating
pollutant removal mechanisms, as does SWWM. It does keep
yearly statistics of the qualities and quantities treated,
stored and/or overflowed.

Modificatlions to STORM have appeared over the years. A
notable modification 1s the one introduced by Dendrou et al.
(1978). It was motivated by the fact that most simulation
models do not account for street flooding. Since some of
the flood volume may be lost to the sewer system as a result
of flooding (via infiltration or diversion), this volume
cannot be assumed to be available to the system. In the
words of Dendrou et al.: "...the frequency of occurrence and
the volume of street flooding should be determined by
consideratlons such as the acceptable level of reliability
of performance of the system (return period of the local
flood) and the economics of the corresponding street flood-

ing damage". To define a local flooding event Dendrou et
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al. assumed that such an event would ocecur only after the
treatment facility had been operating to capacity, the
storage facility filled to capacity, and the quantity to be
overflowed constrained by a maximum allowable overflow rate.
In this case, then, local flooding events corresponds to
ficticious STORM overflowing events. A ficticious computa-
tional treatment rate is defined by the actual treatment
rate augmented by the maximum allowable overflow rate.

The difference between the largest runoff rate and the
ficticlous treatment rate provides an estimate of the level
of local street flooding.

The use of a ficticious treatment rate assumes that any
backup of runoff that results in street flooding results
from the exceedance of capacity of the treatment and storage
units. However, pipe capacity may be exceeded, resulting in
surcharge, before the treatment/storage capacity 1s exceed-
ed. Additionally, inlets to the sewer system, because they
exercise runoff control through their limited capacity, can
cause local flooding of a nature that perhaps cannot be
assessed properly by the use of ficticlous treatment rates.
The statistical model developed through this work will pro-
pose a physically-based formulation to account for the loss
of runoff volume to the storage/treatment system.

The model STORM is found to be useful for the develop-
ment of storage/treatment isoquants. Storage-treatment
isoquants are obtained from a frequency analysis of simula-

tion data. A point on a storage-treatment isogquant 1is
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obtained by determining the relative number of times that
the storage device overflows for a given storage capacity
and treatment rate. Needless to say this requires a large
number of simulation runs. In practice the isoquants are
defined for the fraction of the runoff that is captured and
for the fraction of the pollutant load that is trapped by
the storage unit. The locus of storage/treatment rate
values for a given fraction defines the isoquant. This
capability of the model STORM was employed in a national
assessment of combined sewer overflows (Heany et al., 1977).
Additional illustrations can be found in Melville and Bell,
1979, and Padmanabhan and Delleur, 1978. The proposed sta-
tistical method will estimate the shape of these isoquants
without the need for simulation.

1.2.2 The Stormwater Management Model, Version III
(SWWM III)

The SWWM III model (Huber et al., 1984) is a comprehen-
sive, and widely used, urban stormwater management model.
It has undergone a number of revisions since 1its formula-
tion, most notably the development of a storage/treatment
block and a hydraulic routing block named EXTRAN. These
developments place SWWM a big leap ahead of STORM, at a
corresponding increase in complexity. The program is di-
vided into four major blocks, each corresponding to a
different process. These are given as follows (Huber et

al., 1984):
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1) The input sources:

The Runoff Block generates surface runoff
based on arbitrary rainfall hyetograhs, antece-
dent conditions, land use, and topography. Dry
weather flow and infiltration into the sewer
may be optionally generated using the Transport
Block.

2) The central core:

The Transport and Extended Transport Blocks
carry and combine the inputs through the sewer
system.

3) The correctional devices:

The Storage/Treatment Block characterizes the
eft'ects of control devices upon flow and quali-
ty. Elementary cost computations are also
made .

4) The effect (receiving waters):

The Receiving Block routes hydrographs and
pollutographs through the receiving waters,
which may consilst of a stream, river, lake,
estuary, or bay.

For runoff generation the catchment 1is divided into
sub-basins, with hydrographs generated on each of these and
then routed through the sewer system. LEach subcatchment is
treated as a lumped non-linear reservoir. The outflow 1is
computed with Manning's equation.

Figure 1.3 1illustrates the conceptualization of the
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subcatchments in SWWM.

The runoff is the transport mode by which poliutants
are transported to the storage or treatment device. The
generatlon of pollutants on the surface and theilr subsequent
washoff are handled in a manner similar to that of STORM,
with some additional features, such as availability factors
to account for the fact that not all of the pollutant will
be available for washoff during any event. Another feature
included 1is the consideration of catchbasins and their
effect on the pollutant load.

The pollutant transported through the sewer system is
conveyed to the storage/treatment device. The Storage/
Treatment Block accepts a flowrate and pollutant concentra-
tions to be routed through a network of as many as five
storage and/or treatment units. The flow interactions in
the storage/treatment units is shown in Figure 1.4. Units
may or may not have detention capability. A unit may remove
pollutants through a generalized removal equation or through
particle settling and/or obstruction. Pollutants are cha-
racterized by their concentration and, if desired, by parti-
cle size and specific gravity distributions or terminal set-
tling velocity distributions.

SWWM is found to be a simulator capable of model ing a
wide range of storage/treatment systems. It does require a
large body of Input data which must be painstakingly gather-—
ed for the model to produce meaningful results. While some

of the model components have come under criticism, especial-
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ly the pollutant generation mechanism (see Whipple and
Hunter, 1977), the use of SWWM is fairly well established in
the Stormwater Management field.

Its shortcomings are those typical of large simulation
models. A certain degree of difficulty exists, because of
its scope, in obtaining statistical information from the
model. This 1s due to the high cost associated with running
the model for the sufficient number of times needed to ade-
quately define statistical quantities. This to an extent
has been solved by running the program for a per iod of time,
say a year, with a raintall record that is representative of
the historical record. Also, most of the modeled processes
have, in some way or another, been simplified for use in the
model, so, the user must be aware of these in order to ade-
quately interpret the simulation results.

SWWM can also be used to generate storage/treatment
rate isoquants in a manner analogous to STORM - through
succesive runs of the model for given storage capacities and
treatment rates. Studies conducted by Nix (1982), and
Goforth et al. (1983), using SWWM as a management tool,
resulted in the development of storage/treatment rate iso-
guants for two locations.

From the point of view of statistical formulations
simulation models are a complementary tool. Statistical
methods require good estimates of the distribution moments.
It is the general condition that a good data base for urban

stormwater management studies 1s usually lacking, in the
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form and to the extent required by statistical methods. As
an illustration consider the distribution of runotff for a
certain urban area. To obtain the mean and variance of the
probability distribution of runoff, good gaging records
should be available. These are usually lacking, and those
that are available may be seasonal or of relatively short
duration. Furthermore, these records may originate from
locations different from the ones of interest.

Comprehensive monitoring of storage/release systems is
a vast and costly undertaking. Fortunately, simulation
models provide a tool with which to assess system behaviour
under varying conditions and for extended lengths of time.
Statistical results can therefore be compared and verified
against simulation results. This procedure has already been
employed by Loganathan and Delleur (1982). Such a strategy
will be used here to compare the statistically derived
storage/treatment isoquants with isoquants obtained from the
application of SWWM and STORM.

The following section will review the currently avail-

able statistical models for urban stormwater management.

1.3 Statistical Models in Urban Stormwater Management

The statistical approach to urban stormwater management
views the rainfall/runoff process as a random process, uti-
lizing probability distribution functions to describe the
process of Iinterest. The fundamental motivation for the

approach 1is the underlying randomness characterizing the
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rainfall/runoff process in general. A major advantage of
the statistical technigues is that they allow variables of
interest to take any value within their population range,
assigning a measure ol probability to every realization of
the process, and thus providing an estimate of the 1ikeli-
hood ot a particular occurrence. Additionally, statistical
techniques allow for the assessment of long-term system
behaviour, without resorting to costly simulations, provi-
ding an estimate of system reliability. Thelir shortcomings
are related to the need to conceptualize the catchment in a
relatively simple fashion, and the requirement of adequate
runoff data on which to estimate distribution parameters.
The statistical approach has generated new insights
into urban stormwater management problems, and provides a
powerful tool with which to assess system reliability. A
desceription of the available statistical techniques which
are related to the formulation proposed in this work will

occupy the remainder of this chapter.

1.3.1 The Hydroscience Statistical Method

The Hydroscience Statistical Method (Hydroscience,
1979; Di Toro and Small, 1979) represents a major achieve-
ment in the application of statistical techniques to urban
stormwater management problems. It analyzes, statistically,
an urban storage/treatment/interception system. The method-
ology analyzes long-term hourly raintall records and devel-

ops a set of statistics describing the resulting stormwater
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runoff characteristics of urban areas. The stochastic rain-
fall or runoff process is segregated into a series of inde-
pendent, randomly occurring events, as shown in Figure
l.5(a). From the hourly rainfall data available a runoff
record 1s generated through the use of a transformation - a
rainfall/runoff coefficient. A statistical analysis, to be
discussed in the following chapter, segregates the record
into independent runoff events by defining a minimum inter-
event time for independence. Separated into independent
events, contiguous runoff increments are combined into a
single event of uniform intensity g, of duration dy, runoff
volume Vys and interevent time as shown in Figure 1.5(b).

Interception of runoff is accounted tor as a constant
rate QI’ defined as the available treatment plant capacity.
This is shown in Figure 1.5(c). The storage unit is defined
in terms of a storage capacity, Vg . As shown in Figure
1.5(d), a portion of the incoming runoff volume will g0 to
i1l the storage capacity of the reservoir. The combined
effect of interception and storage 1s shown in Figure
1.5(e). The volume not Intercepted or stored will become
storage overflow.

The runoff variables - event duration, interevent time,
and event rlows - are all assigned probability distribution
functions. Storm flows are assumed to be gamma distributed.

The event duration is also assumed to be gamma distri-
buted. The interevent time is assumed to be exponentially

distripbuted, to be in accordance with the prescribed Poisson
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arrival of independent random events. The use of these
distributions is justified from hydrologic studies (see, for
example, Chow, 1976).

The storage basin operates in terms of the available or
effective capacity, VE. The operation of the device is as
shown in Figure 1.6. The event with wvolume VR arrives at
the unit, which has a fixed available empty space, defined
by Vg . The runoff reduces the space available by VR *
Dur ing the interevent time the space avallable 1is increased
at rate g, which is the treatment rate. The arrival of the
next event will reduce the storage available to Ve' The
model will always assume that at the end of the previous
event the storage available will always be given by VE' VE
is a mean value.

The effective storage capacity is, essentially, a sto-
chastic process with a memory. At least, the effective
storage at the end of an event 1s dependent on the storage
at the end of the previous event, 1n itself dependent on the
storage at the end of the next to the previous event. In
stochastic processes theory such processes are called Markov
processes of the first order. The use of a fixed, mean
available previous storage capacity 1is unfortunate because
this parameter 1s a very important random component. How-
ever, to treat 1t as random would make the formulation
unwleldy, if not Iimpossible to solve. The statistical model

developed in this study will overcome this shortcoming by

allowing the system to be at any previous storage level,
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from empty to full, thus allowing consideration of the full
range of possibilities.

Using the probability distributions and the value of
VE’ the long term fraction of the runoff wvolume bypassing
the storage is calculated as the mean runoff event volume
bypassing the storage unit, V', divided by the mean runoff
volume, V.

Given that the pollutant concentration in runoff is
known, and expressed through its mean value, the fraction of
the pollutant load not captured by the storage unit is given
by:

f, = CRV'/CRV (1.1)

v
where: CH = mean runoff event pollutant concentration.

Because CR is treated as a mean value, and constant,
the fraction of the runoff, and the fraction of the load not
captured will be equivalent. Equation (1.1) is solved
numerically and 1s reproduced here as Figure 1.7.

A similar type of analysis is carried out to assess the
long term behaviour of an interceptor, which can be taken to
represent a treatment plant. The long-term fraction of the
runoff bypassing an iInterceptor of wet-weather capacity QI
is defined as fI and requires numerical evaluation.

When an interceptor and storage basin are operated
together the long term fraction of the runoff volume bypass-
ing the interceptor and the storage basin is defined as t

v’
Numer ical evaluation by DiToro an Small (1979) has
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shown that fIV can be approximated in terms of the other

fractions. The approximation is expressed as:

fIV’kfva (1.2)

The evaluation of these long-term fractions can be sim-
plified if the coefficient of variation of these distribu-
tions are found to be, or assumed, equal to one. In such a
case the gamma distribution will become exponential.

From the graphs of the fraction eguations values of the
storage and interception rate can be obtained in order to
construct the storage/treatment isoquants, as previously
def'ined. While the fraction equations have been shown by
Hydroscience (1979) to give good results when compared to
data from some locations, Nix (1932) has found that they
provide only fair results when used to construct storage/
treatment isoquants for comparison with simulation results
from SWWM. However, the method does yield the range within
which the efficient treatment rate/storage capacity are to
be found.

A further development of the Hydroscience method consi-
ders the effects of a varying pollutant concentration. The
concentration 1is assumed to vary exponentially, in a de-
creasing fashion, with time. The form of the equation is
analogous to Horton's infiltration equation. Further dis-
cussion on this topilc is postponed until Chapter V.

The Hydroscience method does not consider the effect of
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plpe storage in the fraction equations. Neither does it
consider the inlet system as a tactor which may control the
amount of runoff available to the storage unit. The pro-
posed statistical method will seek to overcome these short-
comings by formulating a more generalized model. Ne ver -
theless, the Hydrocomp method introduces a new approach to

urban stormwater management.

1.3.2 Howard's Statistical Method

Howard's Statistical Method (Howard, 1976; Howard et
al., 1981) was developed through the use of derived distri-
bution techniques (see Benjamin and Cornell, 1970, for
applications of the theory in Civil Engineering). The
method in which the runoft process is treated is similar to
that of the Hydrocomp approach - independent events arriving
at the system defined by runoff intensity, event duration,
and interevent time. Figure 1.8 shows the system configura-
tion used in Howard's Statistical Analytical method.

Runoff is generated by subtracting depression storage
and multiplying the hyetograph by a runoff coefficient. It
is assumed that the concentration of pollutant in runoff is
a constant, independent of all event parameters. The treat-
ment plant rate 1s a constant, operating so long as there is
water 1in the reservoir. The treatment erficiency of the
plant is also taken as a constant.

The other major assumption 1is that the reserwvoir 1is

assumed to be full at the end of the previous storm.
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Because of this simplifying, and conservative, assumption
the overtlow volume from storage can be expressed as a
simple relationship in terms of the storm runoff volume, the
Interevent time, the treatment rate, and the storage capaci-
ty of the tank.

Based on related studies Howard assumes that the event
duratilons, interevent times, and storm intensities are expo-
nentially distributed. The wvolume of a storm is defined as
the product of the average storm intensity and its duration:

V. = TeI (1.3)

e e

Using derived distribution technigues the probability
density function of Ve is obtained. To simplify the analy-
sis, Howard disregards the Bessel function form of the dis-
tribution for Ve and approximates the distribution by an
exponential distribution. This procedure 1is utilized by
Howard again and again to simplify the form of the resulting
distribution functions. For example, both the distributions
of runoff intensity and the storage-utilizing runoff inten-
sity are simplified to exponential distributions.

In a modification of the original procedure (Howard et
al., 1981), Howard considered, among other modifications,
the use of a varying treatment rate, the use of a time-
varying rate of rainfall abstractions, and the consideration
of the dynamic routing and storage effects in pipelines.

Utilizing the derived distributions, Howard developed
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annual statistics for the storage device in terms of the
means, or expected values, of the distributions. The ex-

pected number of annual overflow events is given by:

No = Ns Gp(O) (1.4)
where:. No = eXxpected number of overflows,
NS = average annual number of events

which utilize storage;
Gp(O)= probability of having an over-
tlow greater than zero.

The average annual percent runoft control is given as.

CR = 100 (1 - Pu/R) (1.5)
where: Pu = average annual wlume of overtlows,
R = average annual runoff.

The study conducted by Howard (Howard et al., 1981),
showed that both the Hydrocomp's and Howard's statistical
method produced the same maximum deviation from results when
compared with STORM simulations. The maximum percentage
deviation in percent runoff control for Howard's method when
compared to STORM ranged from 13 to 19, while ror the Hydro-
comp's method it ranged from -10 to -14.

Howard's method suffers a loss of accuracy from the

manner 1n which the distributions have been simplified to
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achieve manageable exponential forms. Also, it does not
consider carryover storage, assuming that storage will
always be previously full. It 1is also assumed, for simpli-
clty, that the runoff event duration will always be one hour
less than the storm duration. A further, and understand-
able, limitation, is that the treatment efficlency equation
1s not substantiated by an adequate amount of data. The
treatment efficlency when an overflow occurs 1s not defined
well because its real value has not been estimated.

The statistical method proposed herein will overcome
some of the limitations of Howard's and Hydrocomp's methods.
By using exponential forms it will derive distr ibutions in a
closed~-form manner, without the need for approximations.
Howard does introduce the need to account for storage and
routing effects due to the conveyance system. This conside~
ration will be carried over into the present work in a phy-

sically meaningful manner.

1.3.3 Other Related Statistical Methods

The two statistical methods presented in the previous
sectlons comprise two of the major approaches to date to the
statistical treatment of storage release systems. The other
major approach is the work of Loganathan, Delleur, and
Segarra (1985). This work extends and generalizes further
the theory developed by Loganathan and Delleur (1982), which
suffered from 1limitations similar to the ones already

ment ioned in relation to Hydrocomp's and Howard's methods.
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The original work of Loganathan and Delleur (1982)
utilized uniform intensity blocks of runoff arriving at a
storage device 1in an independent manner. From storage,
water was continuously wilthdrawn for treatment. The method
employs exponential distributions for the event depth, dura-
tion, and time between events. The method assumed that the
storage unit was previously filled to capacity, and no
consideration was given to pipe storage effects or inlet
control. The water quality was handled through the use of a
constant concentration.

Such limitations are understandable in view of the
purposes of that report. Its objective was to develop a
multiobjective 1land wuse planning model, of which the
storage/treatment system was only a part. However, the
fundamental theory allowed further development, and this was
encouraged by the good results that the theory yilelded when
compared to the model STORM (loganathan and Delleur, 1984).
Further work on the theory relaxed the limiting assumption
of full storage at the end of the previous event and allowed
the proper consideration of carryover storage (Loganathan,
Delleur, and Segarra, 1985). However, the theory still did
not account for the effects of inlet control, and the consi-
deration of a water guality formulation.

Other statistical approaches to particular aspects of
urban stormwater management problems exist but they will not
be reviewed here, either because they are not as versatile

as the ones already mentioned, or treat other aspects not
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directly related to storage/release systems. An example of
the former 1s the work of Schwarz and Adams (1981), which is
based on the work of Smith (1980). Schwarz and Adams ob-
tained analytical expressions for the probability distribu-
tions of spill wvolumes from two detention storage reservoirs
in seriles. However, the procedure is not easily extended to
a higher number of storage devices which would general ize
the process. The assumptions as to the fundamental hydro-
logy are those typical of the statistical models discussed
here, and no water quality considerations are included.

An example of the latter is the work of Chan and Bras
(1979). Based on the Kinematic wave theory, Chan and Bras
developed, through the use of the derived distribution tech-
nique, the distribﬁtion of t'lood volumes above a given
threshold. This allows them to compute the flood volume
frequency for a given catchment. The eguations obtained
through the kinematic wave method could not be integrated
analytically to obtain the desired distributions so an
approximation was devised. The formulation does not
consider storage devices explicitly, and therefore is not

directly related to the type of problem considered here.
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CHAPTER II

Stormwater Detention Planning Model

2.1 Introduction

The development of the statistical model in the present
work requires the conceptualizatlion of the urban drainage
system in a manner that effectively accounts for the rele-
vant parameters of the process. The major components are
(Roesner, 1982): V

1. Surface Runoff

2. Transport through sewers and major drainage
facilities.

3. Receiving water.

The runoff generated over the urban catchment travels
overland to the inlets of the stormsewer system. Passing
through the 1nlet system the runoff travels to the storage
or treatment unit for processing. Hydraulically, the
inlets, because of their limited capacity, will tend to
create ponding for large storms (Burke, 1978). The effi-
clency of the 1inlets in trapping runoff flows depends on
geometric and hydrauliec factors (Akan, 1973; Yu, 1979).
These factors determine the depth of flow obtained over an
inlet during a runoff event.

The flooding depth obtalned during an event may be of
such magnitude that a portion of the runoff volume may be

lost to the 1nlets through overflow into adjacent areas not
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drained by the inlet system. From the management poilnt of
view 1t may be desirable in some situations to provide some
relief to the sewer system by conveying a fraction of the
runoff volume to another location. This would reduce the
storage requirement for the major storage treatment device.
Studies along this line have been conducted by Wisner et al,
(1981), and Wisner and Kassem (1982). Wisner defined the
coricept of dual storage in terms of inlet control of runoff
volume. The idea is to utilize the limited capacity of
inlets, or to 1limit this capacity by devices, to divert a
portion of the runoff volume to a surface storage unit, such
as a park. This diverted volume may never be treated. The
objective 1is to reduce the storage requirements on the sewer
system and lessen the impact of local flooding. It is based
on the assumption that i1t is less costly to provide limited
surface storage than to provide additional sewer storage
capacity.

The typical planning formulations assume that surface
runoff passes down to the sewer system without suffering any
effect from the inlet devices. The inlet is assumed to
posses Infinite capacity to pass the flow without modifilca-
tion (U.S. Army Corps of Engineers, 1977). In the statisti-
cal approach this may not be a good assumption because
extreme events have a finite probability of occurrence, and
the resulting flows will certainly be affected by the

limited capacity of the 1nlet system. It 1s expected that
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for major flows the limited capacity of the inlets will be
exceeded, producing local flooding. This affects the design
of the major storage unit because it cannot be assumed that
all runoff volumes will be intercepted by the inlet system.
In the sequel formulation and derivation of a storm-
water detention planning model that effectively accounts for

the processes described above 1is provided.

2.2 Formulation of the Storage Equation

The representation of the urban stormwater catchment
used in the model 1is shown in Figure 2.1, and the following
discussion 1s referred to that figure. The representation
comprises the catchment, the inlet or trapping system, the
storage unit, and the treatment plant. The system is
described by the following event based parameters and
variables:

S(n) = available storage (empty space) at the end
of the nth runoff event (inches) (see Fig.
2.2);

an) = actual runoff volume of the nth event
(inches);

Xén) = effective rainfall duration of the nth event

(hours);
(n) _ th
X2 = runoff duration of the n event (hours), a
function of the effective rainfall duration;
X(n) = time between the end of the (n—1)th event

3
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and the start of the nth event (hours);

Y(n) = volume of storage overflow at the nth event
(inches);

YI(n)= runoff volume not captured by inlets which
contributes to park storage or is diverted
elsewhere (inches);

S(n-1)= available storage space at the end of the

(n—l)th event (inches);

a = rate of water withdrawal from the storage
unit (inches/hour);

b = storage device design capacity, the maximum
volume available for treatment (inches); and

¢ = a measure of the surface runoff trapping
capaclty of the inlet system, which deter-
mines the runoff volume available to park
storage.

Runoff events are produced over the urban catchment by
rainfall events having a certain depth and duration. Runoff
events are separated by time periods called interevent
times, Catchment runoff 1s routed to the trapping system,
which comprises the inlets to the stormsewer system. OQver
the catchment the runoff events are described by an event

n
depth X& ), by an event duration Xén)

time Xén>. The event depth 1s the actual runoff volume

, and by an interevent

obtained from the rainfall event. The runoff duration and
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interevent time are related to the effective rainfall
duration and interevent time, respectively. The actual
hydrograph is simplified to a block hydrograph of constant,
average, runoff rate. The use of such shapes is Justified
for lumped models where interest lies 1in the total event
volume and duration rather than on the actual runoff rate
(Morris and Wiggert, 1972; Hydrocomp, 1979).

A runoff event gets divided into two parts, namely (1)
contribution to park storage or detention storage, which is
generally not treated, and (ii) contribution to the storm
sewer system, which is treated. It 1is assumed here that
water will be diverted to the park storage or other location
only when the surface runoff trapping capacity is exceeded.
Therefore the amount of water (in volume units) which passes

through the sewer system in an event can be expressed as
Z(n) = Min (x(ln), cX(Qn)). (2.1)

The term cX2(n> represents the maximum amount of runoff
that the inlet system can capture over the event duration.
This 1s defined by the limited system trapping rate c.

The amount of water diverted is gilven by the difference
between the total runoff volume X(n), and the maximum amount
captured by the 1inlet system over the event duration cX(n),
if the total runoff volume is the greater amount ; otherwise

no water 1s diverted. Letting YI represent the diverted
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volume, it can be expressed as

(n)

v (M) ey (xinl cX,

. 0) (2.2)

The runoff volumes passing through the stormsewer
system will travel to the storage unit,. The shape of the
hydrographs is assumed to remain the same. The sewer
network is treated as a linear channel system. This implies
that the event time base 1s unaltered. The block hydro-
graphs are only shifted in time, which does not affect the
volume relationships [see time shift routing in ILLUDAS
(Terstriep & Stall, 1974)1].

As stated previously the runoff duration is related to
the excess rainfall duratlon. Howard (1981) considered this
relationship in his statistical model. To assess catchment
and sewer effects on hydrograph durations, Howard assumed a
symmetric triangular hydrograph with a peak runoff rate
equivalent to the effective precipitation rate. From conti-

nuity the hydrograph time base is given as

ox ! (2.3)

el
n

Howard also observes that for large catchments with

significant plpe storage the peak runoff rate will be less
than the effective rainfall intensity. Thus the time base

must be larger than twice the effective rainfall duration.
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volume, it can be expressed as

YI(n> = Max (Xinl CXS? 0) (2.2)

The runoff volumes passing through the stormsewer
system will travel to the storage unit. The shape of the
hydrographs 1is assumed to remain the same, The sewer
network is treated as a linear channel system. This implies
that the event time base 1s unaltered. The block hydro-
graphs are only shifted in time, which does not affect the
volume relationships [see time shift routing in ILLUDAS
(Terstriep & Stall, 1974)1].

As stated previously the runoff duration is related to
the excess rainfall duration. Howard (1981) considered this
relationship in his statlistical model., To assess catchment
and sewer effects on hydrograph durations, Howard assumed a
symmetric triangular hydrograph with a peak runoff rate
equivalent to the effective precipitation rate. From conti-

nuity the hydrograph time base 1is given as

el
]

5 2X, (2.3)

Howard also observes that for large catchments with

significant pipe storage the peak runoff rate will be less
than the effective rainfall intensity. Thus the time base

must be larger than twice the effective rainfall duration.
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event time 1s much longer than the event duration, by at
least an order of magnitude (Nix, 1981; Goforth, 1983). 1In
effect, E[X3] >> E[X2‘]. It is expected that, if runoff
events last longer than effective rainfall duration, the
runoff interevent time should, on the average, be shorter
than the effective rainfall interevent time. From the above
argument 1t is seen that the correction required on the mean
interevent time should be small, and would be somewhat off-
set by the time lags introduced by pipe flow.

Without altering the distribution postulated for X a

3)

correction factor can be applied to the mean of X the

3
effective rainfall interevent time, to obtain the mean of
the runoff event interevent time, and still utilize the ori-
ginal distribution of X3. A simple correction is suggested
by Equation (2.6). The decrease in 1nterevent time because

of the transformation of rainfall duration is given by
d=%,-X (2.7)
which yields
a=(a, = 1) X, + x, (2.8)

The ratio between the mean runoff interevent time and

the mean rainfall excess interevent time, r3, 1s given by
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rg=1- E[d]/E[X3] (2.9)
1

Because E[X3] >> E[X2] it 1s seen that the correction

is bound to be small. The other parameters in Equatlon

(2.8) are of the same order of magnitude, or smaller than,
t

X2.

The event defining the nth arrival may find that the
tank is not empty - some carryover volume of water may be
present. The amount present is a function of the past load-
ing history of the storage device. Upon the arrival of the
nth event the tank will be empty or partially full. The
amount of storage space available upon the arrival of the

nth event is given by

Min [S(n-1)+ ax{™, b] (2.10)

The quantity axg”)

is the amount of water treated
during the 1interevent time. The minimum reflects the fact
that the physical capacity of the system, or empty space
avallable, is limited %o b.

At the storage unit, the incoming runoff event of

én) is stored while being treated

volume’ Z(n) and duration X
continuously at rate a. If the incoming volume 1is greater
than the empty space available the excess volume 1is dumped
to a water body. This excess volume is the quantity of

greatest interest here. If the incoming volume is less than
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the empty space available no overflow occurs and all of the
runoff is treated. Using the definition of Z(n), the change

in storage during an event is defined as

aXén) - Min (X(n)

A cxén)) (2.11)

A positive value of Equation (2.11) 1indicates an
increase in available storage (empty space) while a negative
one 1indicates a decrease in available storage. Figure 2.2
illustrates the relationships.

The storage available at the end of the nth event 1is
the sum of the storage available at the start of the nth
event and the net change in storage produced during the
event. As seen from Equation (2.11) this change can be
positive or negative. The storage made available cannot
exceed tank capacity, b. However, the process is left
unbounded in the other direction because overflows can
occur. It will be shown that negative available storage is
a measure of the overflow volume.

A the end of the nth event the equation for available

storage 1s given by

S(n) = Min{[Min(S(n-1)+aX b)+aX

3 -Min(X;,eX,)],b } (2.12)

2
where;

S{n-1) if S(n-1) >0
S(n-1) =

0 if S(n-1) <0
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The equation is valid for all n. The value of S(n-1)
when S(n-1) < 0 indicates an overflow, and thus no available
empty storage at the end of the (n—l)St event, because the
tank is full.
Negative storage, which is indicative of an overflow,
can occur 1if

(n) (n) (n)

Min (X377, @%,™) > min [S(n-1) + aX, (n)

, bl + aX2

In such a case, an overflow, equal to S(n), will occur
and the tank will be full at the end of the nth event,

If, on the other hand,

min (x, ™, ex, (M) <un [5(n-1) + axy (™, b1+ ax, (™
then some storage is available at the end of the nth
event.

The process variables described are to be treated as
random varilables. These are the event duration, depth and
interevent time. The probability law of these variables is
to be specified, and the probability law of the storage and
overflow functions derived from these. The dynamic nature
of the process 1is assessed by specifying a Poisson arrival
process for the excess rainfall events. The Poisson process
has been shown to describe accurately the arrival of storm

events (Todorovie and Yevjevich, 1969; Eagleson, 1978).
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An limportant related question is the nature of the
interdependence between event parameters. Studies by
Loganathan (1984), and Eagleson (1978), for 1locations in
Indilana and New England, respectively, demonstrated the sta-
tistical independence between event depth, event duration,
and interevent time,

If the Poisson process 1s used to describe the arrival
of independent storm events it 1s necessary to define the
duration of the interevent time that makes events statisti-
cally independent. A convenient procedure for determining
this time makes use of the fact that interevent times for
Poisson arrivals are exponentially distributed, with a
coefficient of variation of unity. By varying the minimum
number of dry hours that are expected to separate indepen-~
dent events a coefficient of variation is obtained which
approaches unity. This dry period then defines the minimum
number of dry hoursAthat separate independent storm events.
Events ocecurring at the time intervals smaller than this
minimum i1nterevent time are considered to be part of the
same event. It should be noted that this definition
prescribes a maximum number of hours for event duration.
The Hydrocomp Statistical Model (Hydrocomp, 1979), and
Restrepo - Posada and Eagleson (1982) make use of this
approach,

Two other approaches to determining the minimum inter-

event time for event definition have been suggested by Heany



50

et al. (1977). The first is to run an autocorrelation
analysis of the hourly rainfall record to determine the time
lag at which the autocorrelation coefficient becomes insig-
nificant according to some tolerance level. The lag at
which the times become uncorrelated gives the minimum value
of the dry period that separates independent events. The
second approach makes use of the fact that the number of
storm events in a given record depends on the chosen length
of the interevent time., By plotting the number of events as
a function of the minimum interevent time, the time can be
chosen at which the number of events in the period does not
change appreciably with an increase in interevent time.
This time would represent the minimum interevent time.
These techniques are a way of screening the data to fit a
particular distribution to observed data. They do not by
themselves guarantee the independence of the arrivals for
all realizations of the process.

In a similar fashion, for the runoff process, the same
type of analysis can be conducted to determine the minimum
runoff interevent time. Since rainfall records are more
readily available than runoff records, a rainfall/runoff
transformation usually precedes the statlstical analysis.
The most commonly used approach 1s the runoff coefficilent
method. (U.S. Army Corps of Engineers, 1977; Chow, 1964).
The basic procedure of the method is the determination of

the average runoff coefficient which will multiply the
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increment of rainfall depth for that period to obtain the
increment of runoff or effective rainfall depth. The
coefficient 1s, basically, a function of physiographic
characteristics. The method can be expanded to account for
(in a lumped fashion) antecedent moisture conditions, infil-
tration losses, and depression storage.

To obtaln the appropriate distributions the process
will be assumed stationary, This implies that the process
is invariant with respect to time, that is, it is the same
when viewed at different times. The index n can then be
dropped from the variables.

Furthermore, the process random variables are assumed
to be exponentially distributed. For Poisson event arrivals
the exponential distribution 1s prescribed for interevent
times, The event depth and duration are also assumed to be
exponential. The use of the exponential distribution for
rainfall and runoff parameters is justified from the relati-
vely good description of actual data obtained with exponen-
tial distributions by varlous researchers (Chow and Yen,
1976; Eagleson, 1978; Delleur, 1983; Loganathan and Delleur,
1984; and Pagan, 1984).

Thus, X and X3, the runoff event depth, the

'
10 %2
effective rainfall duration, and the interevent time, are
exponentially distributed with parameters o5 Bos and Y, res-

pectively., The distributions are expressed as:
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fxl(x1)= o exp (- axl); X9 2 0 (2.13)

= - ; > .
fX2 (x2) 32 exp ( 82X2), X3 0 (2.14)

f X = Y ex -y 3 2.
x; (X3) P(=Yx) x5 > 0 (2.15)
These distributions are used to obtain the distribu-
tions of the available storage and overflow via the derived
distribution approach. The following sections are concerned

wilth the derivation of the distributions.

2.3 Derivation of the Distribution Functions

2.3.1 The distribution of the excess volume not
captured by inlets

The excess volume not captured by the inlets, which is
defined as inlet overflow or park storage volume, 1s obtain-
ed from equation (2.2). Under the assumed statlonarity con-

ditlon of the process this equation becomes:

¥, = Max(Xl—cxz,O) (2.16)
The runoff duration X2, is related to the effective rainfall

duration, X.

5» Vvia Equation (2.6). The relationship is ex-

pressed as
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X, = aX, + x (2.17)

in which a2 and xc are parameters,

t
The distribution of X2 1s specified as exponential

'
[Equation (2.14)]. Because X2 is a linear function of X2 ,

the probability density function of X2 1s obtained from that

1
of X2 via the derived distribution approach. Using Equa-
tions (2.17) and (2.14), the probability density function of

X2 1s obtained as

la]
—~
tal
~
n

8 -B - . > )
exp [ (x2 xc)], X2 X, (2.18)

0 otherwise
in which B = %/az'

The distribution of X1 1s exponential and is obtained

from Equation (2.13). The probability distribution function

of YI is obtained from Equation (2.16). It is noted that

the distribution of YI wlll have a point mass probability at

I
function 1s obtailned from

YI= 0. In the range Y_ > 0 the cumulative distribution

< - <y - <
Plo<Y <y;] = PLOSK, - oX,<y ], (2.19)

or

PI¥r<y;1 = PLX;< Yyt eX,] (2.20)

where P[ ] represents the probability of the given argument.



54

Because X1 and X2 are independent random variables the cumu-
lative distribution 1s given by:
r <y +
< = < .
P[YI yI] XCP[Xl Vp cxa]fX (x2)dx (2.21)

2 2

Substitution of the appropriate expressions in Equation

(2.21) yields the equation:
B
< = - - - -
PLY, <y ] xol1-expl-2(y + cx,) I expl- B(x, x)ldx, (2.22)
Integration finally obtains:

< == -B— - .
P[YI yI] 1 W TE expl a(yI + cxc)], YI >0 (2.23)

The point mass probability is obtained by setting YI=0
in Equation (2.23):
= = 1- g -
P[YI = 0] =1 B exp[ ~ac xc] (2.24%)

The probability density function of Y. is obtained by

I
differentiating Equation (2.23):

a03+ exp[—u(yI + cxc)]; y; >0 (a)
(2.25)

vy (y4)

YI I

1 exp(-ac xc); yp= 0 (b)

-—B__
ac + R

——
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The distribution of the excess runoff volume YI has a
"spike" at the origin corresponding to P[YI=0]. Thus, there
always exists the possibility of having no excess volume
from the 1nlet system.

From the cumulative distribution we can specify a pro-
bability of exceedance of overflow as:

PY;”?y I< e

I (2.26)

where

Z = B -a +
PIY 2y, ) =55 expl-a(y, + ex )] (2.27)

Here EI represents the exceedance probability, which is
a measure of the system reliability. From a design point of
view Equation (2.26) can be solved to yield values of the
overall inlet capacity for specified levels of exceedance

probability. Consider the probabllity of an overflow,

defined as P[YI>0], being less than some value eI. This is
given by the expression
B - <
EEfFTF'exP( ac x,) & (2.28)

Equation (2.28) can be solved to yield values of the
inlet capacity ¢ in terms of the exceedance probability and

the mean runoff rate. The mean runoff rate 1s obtained from
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the term B/a. It is known from the properties of the expo-
nential distribution that O= E[Xl]_l, and B= a, E[Xz'] -l
the parameter of the distribution is the inverse of the
expected value of the varilable. The ratio B/a is seen to
give the mean runoff intensity. Equation (2.28), now
expressed 1n equality form, 1s expressed as

lav

- = €
T iy exp(-de xc) T (2.29)

where 1 _ = Bo,

The value of ¢ obtained from Equation (2.29) is distri-
buted among a fixed number of inlets to obtain the design
discharge for specific inlets.

The values of system capacity and the average runoff
intensity are related to the probability of exceedance or
the probability of having an overflow from the inlet system
during any event. The inlet capacity ¢ is a positive or
zero variable. It 1s thus seen that, as EI——el, indicating
that all runoff will go off as surface flow, the capacity c
must go to zero. This 1is the situation wherein no 1inlet
system exlsts and all flow is overland flow. Conversely, as
Ef——ﬁ’o, indicating that no inlet overflow will occur, the
capacity ¢ must be infinite, indicating that the inlets will
intercept all runoff.

The tradeoff between & and the probability of storage
I

overflow 1s readily observed. For a small value of EI’ c
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will be large, allowing more runoff entrance to the storm-
Sewer and thus to the storage unit, increasing the chance of

having an overflow. For a large value of ¢ ¢ 1is reduced,

1°
allowing less runoff to enter the sewer, thus decreasing the
chance of an overflow into the receiving stream from the
storage wunit, but it also drastically increases 1local
flooding. Essentially the area contalning the inlet becomes
a storage unit because of local flooding.

Equation (2.29) 1s derived from a general conceptua-
lization of the urban runoff system, with the extensive
simplification inherent to that approach. Nevertheless the
expression derived provides for an assessment of the overall

efficiency of the runoff collection system - one based on

runoff event parameters.

2.3.2 Distribution of the storage S(n)

The storage equation already formulated is used to
derive the probability function for storage 1levels. The

storage equation is given as:
S(n) = Min{[Min(S(n-1)+ aX3,b)+ aX2—Min(Xl, cxz)], b} (2.30)

The distributions of Xl’ X2, and X3 are used to derive
the corresponding distribution for S(n). The process repre-
sented by the storage equation has been assumed stationary.

The distributions of the random variables X X and X, are

1> 72 3
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assumed stationary in the sense that their distributions are
invariant with respect to time. The storage level at the
end of any event is a function only of the storage level at
the end of the previous event and the random hydrologlec
occurrences in the intervening period. The process is thus
classified a first order Markov process.

Because of 1its intricacy the derivation of the distri-
bution function will proceed in stages. First, the distri-

bution of the following variables is obtained:

7 = Min(Xl, cx2>, (2.31)

W= aX, - Z, (2.32)
and

T = Min[S(n-1) + aX_, b] (2.33)

3’

The storage equation 1s then expressed as:

S(n) = Min (T + W, b) (2.34)

The derivation of the distributions for Z, W, and T now

proceeds.

2.3.2.1 The distribution of Z = Min (Xl’ chl
To obtain the distribution of Z it is first noted that

Xl and X2 are independent random variables. The distribu-
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tion of Xl is given by Equation (2.13), and that of X2 by
Equation (2.18). The most convenlent form of obtaining the

distribution of Z is through the expression:

P[Z > 2] = P[X1> z] P[X2>z/c] (2.35)
If 0<z <ex,, then P[X2 >%/c] = 1, because the distribu-
tion of X2 is defined for X2 b X,- In this case Equation

(2.35) becomes:
P[Z 2 2] = exp (-az); 0 <z < ex, (2.36)

For 1z > CXy s

(2.35) to yield:

both distributions are used in Equation

PLZ < z] = exp (Bxc) exp [-(a+B/c)z]l; 2> ex, (2.37)

The probability density function of Z, obtained from

Equations (2.36) and (2.37) is given by

aexp (-~oz); 0<zg <ex, (a)

fZ(z) = (2.38)
(a+ B/c) exp (Bxc) exp [-(a+ B/c)z]; =z> ex (b)

0 elsewhere

Equation (2.38a) indicates that for the range z<eX , the
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distribution of the runoff volume entering the stormwater
system 1s given by the total runoff distribution, implying

that all of it is trapped.

It 1s of interest to find the mean value of Z. This is

done by taking the expectation of Z:

E[2] = /) z £,(2) dz (2.39)

For the particular pdf of Z it is obtained

CX

C 00
E[Z]= o /o z exp(-0z)dz + (a+B/)exp (Bxc)éX z exp[-(ot+B/0) z]dz (2.40)
c
Integration by parts ylelds
7] = —— - —B__ exp (=aex) (2.41)
) aloctp) P c :

E[Z] represents the mean value of the runoff volume
which enters the stormwater system. It is a funection of
runoff duration and depth parameters, and of the inlet
parameter c. It is to be noted that, as ¢ increases, E[Z]
will approach l/a , which 1s the mean runoff volume, E[Xl].
As ¢ becomes small, eventually becoming zero, E[Z] will be
reduced to zero also because no runoff will be entering the
system.

It is also of interest to compare Equation (2.41) with
E[YI], the mean value of the runoff that is not trapped by

the system, and contributes to park storage. Using Equation
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(2.25):

ELY,] = 0 PLY;=0] + 20 exp(-oex ) /7,5, expl-oy)dy;  (2.12)

which yields:

BLY1) = sramr gy P (-oex) (2.43)

For E[YI], as c¢ increases, it will go to zero, indica-
ting that all flow is trapped by the inlets. As ¢ becomes
small E(YI) will tend to become 1/a, indicating that all the
runoff remains as overland flow.

From Equations (2.41) and (2.43) it is seen that
E[2] + E[Y;] = EEXl] (2.44)

2.3.2.2 The Distribution of W= a - %

Because 7= Min (Xl’ cX2) this term will not be indepen-
dent from aXz, and appropriate regions of integration must
be defined. To achieve this W is split into the following
ranges:

aX, - X if X < eX
W= (2.45)
(a-c) X2 if X, 2 ¢cX

It will be assumed from here on that c>a, that 1s, the

inlet capacity must always be greater than the treatment
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rate, otherwlise a storage unit would not be required and
there would be no overflow, thus invalidating the problem.
For any weR, the cdf is defined by

PIW<w] = P[(W<w nxl < cXZ) U(W<wn x1>cx2)] (2.46)

Because the events are mutually exclusive:

PIW<wW] = PLWLw nXl < cX2] + P[Wgwpn Xlz cX2] (2.47)

Substituting from Equation (2.45):
< = > - N0 >—ﬂ— .
PLWswW] P[(Xl>aX2 W) (Xl<cX2)] + PL(X; al_c)fl(Xl>cX2)] (2.48)

Because X2 is a bounded variable the region of integra-
tion for the cdf will be related to Xc’ the lower bound of
X2.

From Equation (2.45) it is evident that W can be a
negative variate, so that positive and negative ranges for
the cdf are introduced. The derivation will be carried out
by specifylng the range and the relative location of xc in

Equation (2.48).

Range w>p, w/a> X,

This situation, for Equation (2.48), is shown in Figure

2.3. For the bounds of the regions in the figure:
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Density Function of W, Region W>0, W >xC
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_ ,W/a cx
PlW<w] =/ S 2 fx (Xl) fx (x2)dx1 dx2 [Region (A)]

*H, %0 1 2
® CXC (
+J I £, (x.) £, (x,)dx, dx, [Region (B)] (2.4
A X, 710 Tx, e 17" -49)
XpTg ¥raxyw ol 2
o Xl/c
+ /[ J £y (xl) fX (xz)dx1 dx, [Region (C)]
XpTex, X7, 71 2

Substitution of the distribution of Xl and X2 in Equa-

tion (2.49) yields the following intermedlate results for
each region:

w/a

Region (A) =8 fxc [1 - exp (~a cx2)] exp [-3(x2—xc)]dx2

Region (B) = Bi/w&xp[—a(axz—w)]—exp{—acx2ﬂ}exp[-B(x2—xcﬂ dx,
a
Region (C) =a /f { l-exp[-6(§l>- x )1} exp (-ox.) dx
c c 1 1

CX
¢

Carrying out the integration for each region and adding

the results ylelds:
w7 _ OB - _ . >
PIWSw] = 1 -gzpg exp [-B(w/a - x )15 w 2 ax (2.50)

Range w>o, w/a< x

For this range the appropriate regions are depicted in

Figure 2.4. The cdf 1is now given by:
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\IE

Figure 2.4 Integration Regions for the Cumulative
Density Function of W, Region W>0, W< X,
a
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P[Wgwl =8 f°°P[ax2-w<X <ex,] £y (x,) dx, [Region (D)]

1 2
X 2
¢ (2.51)

Iz <X
+ 0 ex, P[X‘2 c_l] fxl(xl) dax, [{Region (E)]

Integration and summation yields

PlWwgw ] = 0t§+6 exp [- o (axc - wl; w<axc (2.52)

Now, the negative ranges are considered.

Range w < 0, w/(a—c) >X,

Figure 2.5 illustrates this range. The cdf is given by

PlWgw) = 7 P[ax2 - w<X1< 3{_2] f‘x (x2) dx [Region (F)]
c

W 2 ?
ac (2.53)
X
+ ‘{"” Plams <x,551) fy, (x) dx)  [Region (8)]
=

Integration and summation of the two terms yields:

PWgw] =ua6+ Sexp (Bxc) exp(—%c-e—w); w <(a—c)xC (2.54)

The inequality of the range in the above equation

changes sense because it was assumed that ¢ > a.

Range w< 0, w/(a-c)< X

Figure 2.6 shows this range. The cdf is given by
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Figure 2.6
Density
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= f® -w < <
Plw<w] &c P[ax2 WwSX) Sex,] fxz(xa)dx2 [Region (H)]

(2.55)
+ ‘ éx: PLX, < x,/¢] fxl(xl) ax; [Region (I)]

Integration and summation yields:

PLW <wl =ga—§+—3exp [—a(axc—w)]; w2 (a-c) Xq (2.56)
A negative value of w occurs when the arriving runoff
volume 1s greater than the volume that can be treated during
the duration of the runoff event. This produces a reduction
in the available storage.
It is to be noted that Equations (2.52) and (2.5§) are
similar expressions. In summary, the cumulative distribu-
tion funection of W= aX2 - Min (Xl, cX2) is given by:

OLC+B

'ua—Es exp (Bx,) exp (- W) w < (a=c)x, (a)

B <wls ¢ b em [-alex, - w1 (a - odx, <w < ax (6) (2.57)

- ﬁ exp [—B(g - x )l w>ax, (e)
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The probability density function of W is obtained by
differentiating Equation (2.57)

W = aaaf g e [-olax -n)s (a-c) x, < w < ax, (2.58)

-5 g o -6 & - x)% w > ax

2.3.2.3 Distribution of T = Min[S(n —1)‘Fax3, bl

The variable T represents the storage available at the
arrival of the nth event. This is in terms of the inter-
event time and the storage available at the end of the pre-
vious event. The storage available at the end of previous
event, S(n-1), 1is unknown because of the dynamic nature of
the system. Hence a value for S(n-1) will be specified and
the equations derived conditioned on this value. In this
manner it will be possible to study the limits of system
behaviour corresponding to previously empty, and full,

storage conditions. Letting S(n-1)= s where s0 is the

O’
assumed storage capacity at the end of the previous event,

the expression for T is glven by:
= +
T = Min(s aXs, b) (2.59)

The object is to obtain
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P[T ¢t] = P[Min(so + aX3, b)] (2.60)

The interevent time X3 1s exponentially distributed,
according to Equation (2.15). The derilvation in Equation
(2.60) 1is straightforward since the only randomness is that
assoclated with X3. In the range t< b the derived distribu-

tlon technique yields:

P[T <t]=1 - expl[- g(t -8k s <t <b (2.61)

The pdf is given by:
= l -l - .
Tp(t) exp [-1 (¢t 501 sy <t <D (2.62)

a

For £t 2b, T= b always. The probability of T= b 1is

given by:
P[T= bl= 1 - P[T<Db] (2.63)
Using Equation (2.61) it is obtained:
PLT= b] = expl-—-(b-s)] (2.64)

Summmarizing, the pdf of T= Min (s0+ aX3, b) is given

by:



72

0 for t < s (a)
£p(t) =(L exp EXt - s)] for s, t <b (b) (2.65)

exp [—%(b - s)] for t =" (e)

With the distribution of T and W, the distribution a
S(n), and subsequently of the overflow, can now be obtailned

from Equation (2.34).

2.3.2.4 Conditional distributions of available
storage S(n)

To obtain the distribution of the storage and, ultima-
tely, of the overflow, which 1s the major interest here,

Equation (2.34) is employed:
S(n) = Min (T + W, b) (2.34)

The distribution function for S(n) is defined in terms
of the various ranges associated with variables T and W,
whose dlstributions have already been obtained. The proba-
bility law of S(n) is a conditional distribution, condition-
ed on the value of the storage capacity at the end of the
previous event. The probability formulation is defined as

follows:

P[S(n)gs|S(n-1) = s,d = P[Min (T+W, b)<s] (2.66)
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The variable T is bounded by b and S, while the
distribution of W 1is unbounded, but split among three
ranges. To obtaln the distribution defined 1in Equation
(2.66) the cumulative distribution of T+W must be obtained
first.

The distribution of variable T 1is given by Equation
(2.65). The cumulative distribution of variable W 1is
given by Equation (2.57). Notationally, the cumulative

distribution of W 1s expressed in the following manner:

Fl(W) if w

A
~

PIW < wl = ¢ Fy(W)  1f & (2.67)

—
N
=

I~
=

N

F3(W) if k

n
I~
=

where kl = k2 - cxc, and k2 = axc.
The cumulative distribution of T+W can be obtained

from:

P[T + W < s] = P[W < s-T] (2.68)
where s represents the storage variable. The range of the
distribution is (-»,%), This distribution is used to define
the distribution in Equation (2.66), for, if s<b, it is

obtained:

P[S(n) < s|S(n-1) = s,1 = P[W < s-t] (2.69)
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The physical bounds on S(n) are no available storage,
and full available storage. These are obtained from Equa~
tion (2.68). PFor no avaiable storage 5=0, and the probabi-
lity 1s given by:

P(S(n)=0l8(n-1) = s_]1 = P[T + W<0] (2.70)
For full avallable storage s=b, and the probability is:
P[S(n) = b|S(n-1) = s,1=1 - P[T + W < b] (2.71)

The cumulative distribution of T+W depends on the
interrelationship of the bounds defining the various expres-
sions for T and W. The variable W 1s unbounded but
divided among three ranges., The variable T is bounded
between two positive values. The expressions to be obtained
willl be grouped according to an index defined from the
iInteraction of the bounds of T and W. The index chosen

is:

Sy, = Min (b, s+ k2) (2.72)
The term in the expression compares two volumes, the volume
capacity of the storage unit, and the sum of the available
storage capaclity at the end of the previous event and the

extra capaclty made available during the additional runoff
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event duration. The term k2 = axc represents an increase in
the available capacity to that at the end of the previous
event. Thls is because of the additional event duration,
Xy which allows an additional volume of water to be with-
drawn at rate a. To obtain the distribution of available
storage the general expressions for the distribution of T+W

are obtained first.

The distribution of T+W for Sb = b

Within this case several expressions for the distribu-
tion of T+W are obtained, each defined within a particular
range of values of s. The first of these is illustrated in
Figure 2.7, and shows the range for s< S, + Kl‘ The term 54
+ kl is less than so because k1 is always negative. It
represents a potential reduction of the initially available
storage capacity due to the runoff rate arriving at the
inlet trapping rate over duration X, This term reflects
the case wherein the surface runoff rate is greater than the
trapping rate. The same argument applies for b + kl, where
previously the tank was empty.

For the region illustrated in Figure 2.7 the cumulative
distribution is obtained through Equation (2.69), and

ylelds:

P[T+Wgs] = é'omFl(s-t)dFT(t) ; s<s gtk (2.73)



76

;Z:\>Y LLLLLLL. ya 9 ya Z b

T+W>s ;
T+W<s !
N I
s=sotk, |
I
: So
N\ T+W=s \
I |
i T —=W
$-So ’ k,

Figure 2.7 Integration Region for the Cumulative
Distribution of T + W, in the Range
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This and the subsequent expressions are fully evaluated when
the storage distribution is defined.

As T+W increases in value it will equate, and then
exceed, Syt kl, and a different expression is obtained up

to b + kl. This 1s illustrated in Figure 2.8. The expres-

sion within this range is gilven by:

s—kl

b
P[T+w<s]=éoF2(s—t)dFT(t)E{kfl(s—t)dFT(t); S otk <s<brk, (2.74)

1s

For the next range T+W will be greater than b + k but

1’
less than 8, + k2. This 1s shown in Figure 2.9. The dis-

tribution is obtained from:
fb
P[T+w<s]=SOF2(s-t)dFT(t) 5 b+kl<s<so+k2 (2.75)

The next range 1s obtained beyond s0 + k2 but before b

+ k Filgure 2.10 .indicates that the distribution is

5
obtained from:

So~k2
b
P[T+w<s]=éoF3(s—t)dFT(t);fi?(s-t)dFT(t); 8tk <s<bk, (2.76)
o2

Finally, the last range corresponds to T+W being grea-
ter than b + k,. This is shown in Figure 2.11. The distri-

2
bution is obtained from.

b
P[T+Wgs]= f F3(s—t)dFT(t) 3 s>btk, (2.77)
50
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Figure 2.8 Integration Region for the Cumulative
Distribution of T + W, in the Range
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This completes the formulation for the particular value
of the index. The other case occurs when b > 5, + k2.

The distribution of T+W=s for Sb= s +k2

Within this case some of the expressions obtained are
equivalent to the expressions of the previous section. The
first range, that for s<so+k1, is obtained from Equation
(2.73). This range is not affected by the index.

For the following range two possibilities exist depend-
o If b+k1 < s,
is ob-

ing on the relative valves of b+k., and so+k

1

+ k2 the distribution for the range so+k < 8 < b+k

1 1
tained from Equation (2.74). Within this particular situa-
tion the distribution for the next range 1s the same as
shown in Figure 2.9 but now with the restriction s<so+k2.

Equation (2.75) is used to obtain:

b
PLT+W<s]=/ F,, (8-t )aFy(t) ; b+k.<s<s_+k (2.78)
S0

2<b+k2. Because b is

not a 1limit for W, this case can be obtained from Figure

The next range would correspond to so+k

2.10 and Equation (2.76):

s-ky b
P[T+W<s]=/ F3(s-t)dFT(t) +f F2(s—t)dFT(t) 3
Sq s-ko
(2.79)

so+k2<s<b+k2
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For the last range, s<b+k2, the distribution 1s obtained
from Equation (2.77) as it does not depend on the index.
The other possibility within this case is that b+k

12

so+k2. In this situation Equation (2.73) for the range
s<so+kl does not change. For the range so+kl<s<so+k2 Equa-
tion (2.74) is used, within this narrower range. For the
range so+k2 < s<b+kl the situation is depicted in Figure

2.12. The distribution is given by:

s-ko sk
P{T+W<s]l=/ F (s-t)dP, (t) +/ F, (s-t)dF.(t)
So 3 T S—k2 2 T
(2.80)
b
+ Py (s-t)dF,(t) 3 8otk <s<brk)

s—kl

The next two ranges, b+k1:§s < b, and b<s<b+k2 are both
obtained from Equation (2.76), which applies within these
ranges. The last range, s>b+k2 is obtained from Equation
(2.77).

To summarize, the equations applicable to the various
ranges are shown in Figure 2.13. Now proceeds the deriva-

tion of the distribution of available storage in terms of

the equations of this section.

Distribution of available storage S(n)

The distribution of avallable storage is obtained from
Equation (2.66), in terms of the distribution from the last

section. As defined, S(n) is bounded at b, but unbounded in
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<b

Flgure 2.12 Integration Region for the Cumulative
Distribution of T + W, in the Range
S, tk, <s<b+k,, case S, = s5_ + k3 b
+k%>s§+k2_ 1 b °© =
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Figure 2.13 Domains of Applicability of the Equations for the
Cumulative Distribution of T + W.
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the negative direction. Physically, the avallable storage
varies from full avallable storage to no available storage.
The negative values of the storage equation are associated
with overflow events but do not represent real storage, only
overflow volume. Because of these bounds the storage dis-
tribution will have two point mass probabilities at each end
of the domain -- those indicated in Equations (2.70) and
(2.71). As 1in the last section the distribution of avail-
able storage is obtained according to the index S

b

Storage distribution for 8, = b

The storage distribution is obtained within the bounds
s=0 and s=b, with point mass probabilities at these bounds,
due to the fact that the probabllity of T+W is unbounded.
For this case the distribution obtained depends on whether
the terms so+k1 and b+kl are positive or negative. The
equations to use are those indicated in Figure 2.13(a). It

1s possible for the value of s=0 to lie between b+k, and b,

1
between so+k1 and b+k1, or below so+k1. Each case 1s consi-
dered in turn.

For the situation wherein b+kl < 0 the distribution
of S(n)isobtained by integrating Equation (2.75). This
yields (see Appendix A for details):

PIS(n) <5 | S(n-1)= s ] = B {expl-a(s-5)] +
(2.81)

—alb-s)- Y (p- . n<s
%? exp[-a(b-s) a(b s )1 3 0<s<b



87

Where

# Y8
H = ————————  exp(-ak,) (2.82)
(oa + B)(aa + v) P 2
The probability of S(n)=0 1is also obtained from the
results of Equation (2.75). It is obtained through Equation
(2.70). This 1is accomplished by setting s=0 in Equation

(2.81) to obtain:

P[S(n)=0 | S(n-1)= so] = H* {exp(—ocso) +
(2.83)
% expl-ab- g—(b-so)]} 5 b+k, <0

The other situation is for O<b+k1. It 1s seen from
Filgure 2.13(a) that Equation (2.75), and thus Equation

(2.81) 1is used for b+kl<s<b. For s<b~l~k1 Equation (2.74) is

Integrated to yield:

PIS(n) <slS(n-1) = 51 = # (expl- 4 (s-s)) + (£ -g)i; ] -

% expl-g(s-b)-1 (b-5 )]} + H' {exp [-a(s-s )] —

exp[—%(s-so) + (a+%)k1]} 3 0<s<b+k, (2.84)
Where H= X gg(y—ag) exp(Bxc) (2.85)
g= 2 *8 (2.86)

a—-C
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The probability of =zero available storage 1s obtained

by setting s=0Q in the previous equation:

P[S(n)= 0| S(n-1)= s, = H {exp[%»so + (g-—g)kl] -
2% explgb- %(b—so)]} + H {exp &lso) — (2.87)
exp[%so + (a+§)k1]} 3 8otk <0<brk,
The last situation is for O<so+k1. From Figure 2.13(a)
and the previous results it 1s evident that Equations (2.81)
and (2.84) are used for b+k <s<b + k

<s8<b and S5tk 1s respec-

1 1
tively. For s<so+k,1 Equation (2.73) is integrated to yield:

P[S(n-1)=s| S(n-1)=s 1 = H fexp[-g(s-s )]—

(2.88)
& - -b)- X(p- .
75 exp[~g(s-b)~ L(b-5)1} 5 0<s<s vk,
The probability of zero available storage is found by

substituting s=0 in Equation (2.88):

PLS(n)=0]| s(n-1)= sO] = H {exp(gso) —_—
(2.89)
ag

=2 explgb - L (b-s )1} ; 0<s +k

Y 1

The remaining formulation for thils case is that of the
probability of fully avallable storage capacity, This has

the same expression for all the situations in this case, and
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1s obtalned through Equation (2.71). From Figure 2.13(a),
Equation (2.75) 1is applicable, and at s=b yields, through
Equation (2.71):

PS(n)=b | s(n-1)=sJ= 1 - &' {exp(-a(s_~b)] +

(2.90)

il
o

9‘3. exp[--‘g(b-so)]} ;S

Equation (2.90) exhibits a peculiarity in the sense
that 1if xc———>0, then b=so since it 1is impossible to have
b<so, that is, the storage capacity cannot be less than the
previous storage capacity available. Under these conditions
Equation (2.90) becomes:

PIS(n)=b | S(n-1)=b] = 45 ; x,=0 (2.91)

It 1s noted that Equation (2.91), under the same condi-
tions, corresponds to P[W 2 0], obtained from Equation
(2.57¢). Since W = ax2—Z, the condition W2 0 implies that
the volume of water withdrawn from the unit is greater than

the arriving runoff volume.

Storage distribution for S, = 8otk

2
For this case the equations indicated in Figure 2.13

(b,c) are used. First to be considered is the situation in

Figure 2.13(b). The consideration of the placement of s=0
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is similar to the previous case. For the situation b+kl<0
Equation (2.81) applies up to s=s,+k,. For s>s +k, Equation

(2.76) 1s integrated to yileld:

P[S(n)gs | S(n-1)= so] =1+ 8 {expi—% (s—so-kz) + ok,

+55 expl-a(b-5)- F(b-5 )1} - expl-Y (s-5.k,)] (2.92)

- Q {exp[-g(s-so)]— expl- ¥ (s-s_-K,)-8x 1} 5otk <s<h

Where e T zag)(y_g) exp(Bx,) (2.93)

The probability of =zero available storage is given by
Equation (2.83).
The next possibility within this situation 1s given by

so+kl<0<b+k From Figure 2.13(b) 1t 1s evident that the

1
equations correspond to those for the case Sb=b, except for
the range expressed in Equation (2.92). A similar observa-

tion applies to the situation 0<so+k The probability for

1*
full available storage capacity 1s obtained from Equation
(2.76), in a manner analogous to that of the last section.

The operation yields:

P[S(n)=b | S(n-1)=sO] = exp[- %(b—so-k2)} —
H {exp[—%(b—so—k2) + 0k,] +%@exp[—%aﬁ (b-s) 1} (2.94)
+ Q fexpl-5 (b=5)1 - expl- ¥ (b-s -ky)-8x 1} ; S,= 54+k,

The other situation 1s 1illustrated in Figure 2.13(ec).
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The only difference to Figure 2.13(b) 1is that now so+k2 <
b+k1. Thls means that now only two sets of equations will
be obtained. Everything will remain the same except for the
expression corresponding to the integration of Equation

(2.80), which yields:

P(s(n)<s | S(n-1)= s.1= 1 + H {exp [~ & (s-s) + (L -g)k;1-
& expl-g(s-p)-f (b-5)]} + H {exP[fg-(s-so) + (v+aa)x,]
—expl @+ )k - L(s-5)1} - expl- L (s-5 -k,)] (2.95)

-Q {exp[—g-(s—so)]—expﬂ-% (s—so—k2)~3xc]} 3 Stk <s<b+kl

2
The other ranges remain the same, but now only two
possible locations for s=0 exist. These are illustrated in
Table 2.1 where a summary 1is presented of the basic and
derived storage equations for all cases and conditions.

The probability density function of the available stor-
age 1s obtained by differentiating the cumulative distribu-
tion, However, this is of less present interest than the
distribution of overflows, and only the latter will be

obtained.
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Table 2.1 Summary of Equations for the Distribution of Available Storage

Case Given Basic Equation No. Final Integrated Egquation
Condition with Range No. with Range
Sptk, <0
and 275 0O<s <b 2.8l , 283(s=0) ; 2.90(s=b)
b+k=<0
Sotki<01274 0<s <b+k 284; 2.87(s=0)
Sp=b and
b+k >0|275 b+k,<s<b 28l ; 290(s=b)
273 0 s <sptk 2.88; 2.89(s=0)
5°+k]>0 2.74 50+k|<5 <b + k 2.84
275 b+k <s<b 2.8l ; 290(s=b)
S0tk <01275 g<s <surk, 2.8l ; 2.83(s=0)
and
b+k <0276 sgtky<s <b 2.92; 294(s=b)
sotk, <0 | 274 0<s <b +k, 284 ; 287(s=0)
Sb =So+kz | and 275 b4k <s <sgtk, |28i
and 10 +ki>0 1596 s rky<s <b 292 ; 2.94(s=b)
bk <sgtk, |~ T T T D T LT T Tt T T[T T T T s s s s m e 1
273 0<s <sqtk,
288;281;289(s=0
275 btk <s <sgt ks 8 12.89(s=0)
So+k| >0
214 serki<s<brh | g 292 294(s5b)
276  sotka<s <b P ETE &SRS
274 0<s <sotky 284, 287(s=0)
Sotk <0 | 280 sgrkp,<s<b+k, 295
Sb=S°+k2
276 b+k <s.<b 292 ; 294(s=b)
and T T T e e e e e e e
273 O<s <sytk 288 ; 2.89(s:=0)
b+k, > sgtk,
274 sgtk <s <sgrk, 284
sotk >0
280 sgtk,<s <b+k, |295
276 b+k <s <b 292 ; 294(s=b)
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CHAPTER III

The Distributlon of Storage Overflow

3.1 Introduection

An overflow from the storage unit 1s produced whenever
the incoming runoff volume is greater than the available
storage capacity. Because the term Z, the incoming runoff
volume, carries a negative sign in the storage equation, an
overflow condition, obtained whenever Z is greater than the
avallable storage capacity will produce a negative value of
the storage equation. The magnitude of this value is equi-
valent to the magnitude of the storage overflow.

Letting Y(n) denote the magnitude of the storage over-
flow from event n, it 1s related to the magnitude obtained
from the storage equation as follows:

- S(n) if  S(n)<o0
Y(n) = (3.1)
0 if S(n)> 0

The cumulative distribution of Y(n) 1s obtained from
that of S(n) through the derived distribution approach. The
relationships that define the distribution of overflows are

given by:
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0 if y<0
P[Y(n) <y] = P[S(n) >0] 1if y=0 (3.2)

P[S(n) > -yl 1if y>0

The fundamental expressions obtained in Chapter II are

used to obtain the distribution of the overflow.

3.2 The Distribution of the Storage Overflow

The occurrence of an overflow is related to a negative
value of the storage variable. The particular expression
that is obtained for the probability of an overflow depends
on the particular fundamental expression which applies for
that case. The cases correspond to the way the basic
process varilables are defined and the expressions for the
distribution of storage were obtained according to a given
set of conditions. These conditions apply to the distribu-
tion of overflow, but on a restricted basis because the
concern 1s now with the negative range of the storage
variable.

The conditions for the distribution of the overflow are
defined by the values of the terms so+k1 and b+kl, since
these are the only ones that can be negative. Figure 2.13
indicates that the basic equations used to obtain the dis-
tributions are Equations (2.73), (2.74), and (2.75). The
resulting expressions can be classified according to the

scheme used for Table 2.1, but all entries are generated by



95.

three basic equations.

With the given conditions three possibilities exist for
the distribution of the overflow Y(n). These are i1llustra-
ted 1in Figure 3.1, which depicts Equation (3.1). For each
of the cases the distribution i1s obtained via Equation
(3.2). The distributions are obtained, in turn, for each
particular case.

Distribution for condition b+k,<0

1
This condition is 1illustrated in Figure 3.1(a). The

equations that apply are Equations (2.73), (2.74), and
(2.75). With these, the storage distributions given in
Equations (2.88), (2.84), and (2.81), respectively, were
obtained. To obtain the distribution of storage overflow

the relationship in Equation (3.1) is used to obtain:

P[¥(n) < s[s(n-1) = s 1 = P[S(n)> -s[S(n-1) = s, (3.3)
for s > 0
To obtain the expression in Equation (3.2) either
integration of the basic equations or direct substitution of
¥y= -s 1n the storage equations will yield the overflow dis-
tribution. The first range corresponds to basic equation
number (2.75):

s

PLT + W < s] = L F,(s-t)dFy(t) (2.75)

o]
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—————— -ki=so

~— -k,=b

So+k

1

0]

b+k,
{a) b+k, <0

Y(n)4

"""" ki=so

1

b+$(n)

¥
So'f‘k;

b“l‘k|
{b) so+ Kk, S0<h +k,

Y(n) F'

+ S(n)

0 I
Sot+k,

{c) setk, >0

b+k,

+ S(n)

Figure 3.1 Relationship between Y(n) and S(n)
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Integration of this equation, or, more conveniently, direct

substitution of s= -y in Equation (2.81), which is a result
of Equation (2.75), yields:

PIY(n) > y|S(n-1) = s, ] = H' { expl-a(s_ + y)] +

(3.4)
aa - Y (h- . x. -
V—exp[ a(b+y) a(b so)]} 3 0<y<-ky-b
The next range

(2.74):

corresponds to basic equation number

b+kl s
P[T + W < s]=é Fo(s-t)aFp(t) +/ Fi(s-t)afn(t) (2.74)
bﬂﬁ
Integration of the equation, or, direct substitution of
= -y 1n the resulting Equation (2.84) yields:
- = 1 = Y Y - -
P[¥(n)> ylS(n-1) s,J = Hiexpl a(y+sO + (a gk ]

§§~ explg(y+b) - %(b-so)]} +H {expl- a(s +y)] - (3.5)

expl L(y+s ) + (a+L)ky1} 5=k -b<y < ~ky-s

The last range within this case corresponds to Equation
(2.73):

s
P[T + W < s] =/ Fy(s-t)df;(t) (2.73)
So* kl
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As before, substitution of s= -y 1n the resulting Equa-

tion (2.88) yields:

P[Y¥(n) > y|S(n-1) = s,] =H {exp[g(y+so)] -
(3.6)
“Eexplayd) - L(o-s )1} 5 y>=k-s,

The probability of no overflow is obtained from the

expression:

P[Y(n) = 0 |8(n-1) = s,d = 1 - P[Y(n)>0|S(n-1) = sl (3.7)

The expression on the right is equivalent to P[S(n) >
0]S(n-1) = so]. Using y=0 in Equation (3.4), and substitu-
tion in Equation (3.7) yields:

PLY(n)=O]S(n-l)=so] =1-g" &xp(—aso)+g§exp[—ab-%(b—so)113.8)

The probability density function corresponding to the
contlnuous part of the cumulative distribution function is
obtained through differentiation of the continuous part.
Differentiation of Equation (3.4), after rearranging to

P[Y(n)< y|S(n-1) = s 1, yields:

fY(y) =5 ﬁxexp[-u(y+so) +

ba

= exp[—a(b+y)-—;ﬂ(b-—so)]} 3 0<y<-ky=b  (3.9)
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A similar operation yields, for Equation (3.5):

fy(y) = H{ -%exp[f—i(y*‘so) + (la-g)kl} +

2
S exple(y+e) ~L(b-s )1} + ' {aexpl-o(y+s) + (3.10)

Y Y Y : -k.-b< ¥ < -k.-
a expl E(y+so) + (u+§f)klj} 5 7kt y < -ky-s g

Lastly, for Equation (3.6):

2
Fy(y)=H £g explgly+s,) ]+&explg(y+b)-Lb-s 1135

y>-ky=s (3.11)

The probability of Y(n)=0 remains the same, as it has a
fixed value. All the density functions are still condition-
ed on the specified value of S, although it has not been

indicated in the notation, for simplicity.

>0

Distribution for condition 5, * k1 <0, b + kl

The distribution for this condition, shown in Figure
3.1(b), can be obtained from the equations of the last
section. For the range 0<y<-k,-s_ Equation (3.4) 1is used.
For the probability of no overflow Equation (3.4) is used at

y=0, and is substituted in Equation (3.7) to yield:
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Pl¥(n)=0{S(n-1)= s ] = 1-H{ expl= s, + ( -g8)k;]

ag - Yp-s ) - u¥ - -

~ explgb a(b so)l} H { exp( aso) (3.12)

expl Ls + (a+ L)k 73
a o a 1

For the range y >—kl-so Equation (3.6) 1is used. The

density functions are given by Equations (3.10) and (3.11),

within the ranges 0<y<-k1—so, and y>-k1-so, respectively.

Distribution for condition s + k1 > 0

For this condition, shown in Figure 3.1(c), only one
expression 1s obtained, corresponding to the range y>0 with
Equation (3.6). The probability of having an overflow is
obtained through Equation (3.6), with the procedure illus-

trated in the previous sections. The operation yields:

PL¥(n)=0[S(n-1)=s 1= 1- Hiexp(gs )

_a “Y(no
Yexp[gb E(b sy)1 ) (3.13)

The density function is that given in Equation (3.11),
within the range y>0.

The equations appropriate for each condition together
with the basic model equations are summarized in Table 3.1.
The classification is made according to the scheme used in

Table 2.1 of Chapter II.
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Table 3.1 Summary of Equations for the Distribution of Storage Overflow

. ) ) Final Integrated Equation
Ca5% | Condition | Range in Terms of oy o R
P[Y(")?y] P[Y("):O] Funcfign
so+k <0 [2:75 O<y<-k;-b 34 138 (y=0)| 3.9
and 2.74 -k -b<y<-k-s, 35 3.10
b+ki<0 |2.73 Ki~so<y<w 36 301
B [ RE0]am o< | a5 [sieieol| a0
b::ld> 0273 “krsy<y<w 3.6 311
Sotk >0 | 273 O<y<w 36 |303(y=0)| 3.l
sotk, <0 | 2.75 O<y<-k~-b 34 |38 1(y=01] 3.9
and 2.74 -b-k <y <-so-k,| 3.5 3.10
So=Sotke | b1k <0 |73 g -k<y < 36 300
b+k?:ds°+k2 SO;E:O -2_.7“4—(;<—y<—so-k:“ T35 (302 y=0)| 3.0
b+k >0 |2-73 ~So-ki<y <e 3.6 301
[ s+k>0 273 O<y<w | 36 [33=0| 31 |
Sh = S0+ Ky ok <0 274 0<y<-k,-s, 35 1312{y=0)] 3.0
and 2.73 K-so<y < 36 301
brki>Sorlel 550|273 O<y<a | 3 36 [33y=0l| 311 |
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3.3 Exceedance Probability

The probability of having an overflow is a measure of
system performance. For specified values of the storage
capacity and the withdrawal rate the probability of having
an overflow from a runoff event can be assessed. Conver-
sely, from a specified overflow probability the required
value of the storage capacity and withdrawal rate can be
determined. This overflow probability is called the exceed-

ance level, and is specified by the following expression:
P[Y(n) > 0|S(n-1) = s e (3.14)

Where e is the exceedance probability, or, within the
context of reliability analysis, the assoclated system risk
level.

Another type of exceedance probability has been consi-
dered in Chapter 2, referred to as €1 - the exceedance
probability associated with the system runoff-trapping capa-
city, c. Increasing €1 reduces the design value of ¢, and
thus the value of €, because less runoff will enter the
stormsewer system. A similar argument can be put forth if
variations in e are considered.

The expressions to use in Equation (3.14) are easily
obtained from Equations (3.7), (3.12), and (3.13) through

the following expression:
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P[Y(n) > 0|S(n-1) = sy,d = 1 - P[Y(n)= 0s(n-1)= s, (3.15)
which 1s the converse of Equation (3.7).

3.4 A Special Case

Most planning models to date take no account of the
controlling effect produced by the inlet trapping system in
an urban area. Runoff 1s assumed to pass completely through
the inlets on to the stormsewer system. In other cases
catchment flows are treated as overland flow for the purpose
of simplifying system configuration - mainly for cases where
a large number of simulation runs are to be made. The sta-
tistical model proposed here can be simplified to treat
these approximations.

If runoff flows overland to a storage unit this can be
treated by the statistical model by allowing c, the system
trapping capacity, to go to infinity. This assumes that all
of the runoff volume will arrive at the storage unit.

Another simplification 1is to assume that the runoff
duration 1is equivalent to the effective rainfall duration.
Also, the mean event duration may be avallable from records
or from simulation studies. This means that 1t 1is not
necessary to transform the duration via Equation (2.6)
because the event duration statistics are directly available
from data. Thus, in Equation (2.6), a, = 1, and X, = 0, and

therefore X2 = X2. This will greatly simplify the model
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because only a few equations will be needed.

For the cases discussed here (¢ + N X2 = X2U the

cumulative distribution of storage 1is given by the last

entry in Table 2.1. Because, now, k, = k, = 0, and S, = Sq

1 2 b
because soi b always, only Equations (2.88), (2.89), (2.94),
and (2.95) will describe the process. These become the

following:

P[S(n) = 0]S(n-1) = 8,1 = H {exp(-as ) +
aq

Y
5 expl-ab - E(b-so)]} (3.16)

P[S(n) < sls(n-1) = s 1 = H {explo (s-s )] +

aa - -Y(p- ;
= explals-b) -3 (b-s )]} ; 0d¢s<s (3.17)

PIS(n-1) < s S(n-1) = s.] = 1 - @ {expl~ L(s-s )] -

expl~ L(b-s )1} - (1-H) exp(-L (s-s )1 +  (3.18)
HEZ expl-a (b-s) - L (v-s)] 5 5, <8<
P[S(n)=b{S(n-l)=sOJ=Q{exp[-'g(b—so)]—-%exp[-g(b—so)]} (3.19)

The coefficients in the distribution are now given by:

B} )
Bo= (ca¥ Bllaa+ 7) (3.20)
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H=H (3.21)
aay

Q = @a T By (Y- 32) (3.22)

g = - o (3.23)

It 1is recalled from Equation (2.18) that B =B2/a2; and
a, = 1 for the special case.

The special case model is applicable to situations
wherein all surface runoff is trapped and the event duration

statistics are available.
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CHAPTER IV

The Estimation of the Storage Capacity and Withdrawal Rate

4.1 Introduction

The storage distribution derived in the previous
chapter provides the basis by which the interaction between
the storage capacity and treatment rate can be assessed.
The quantification of this interaction is important from the
design point of view because the interaction is studied
through the specification of the performance level of the
detention unit. Thus the designer can obtain the change in
storage capacity due to a change in the withdrawal, or
treatment rate. A desired combination can be obtained for
some related criteria that would provide the desired level
of performance. An optimal combination, taken here as one
that wlll minimize storage and treatment costs, can be
obtained if cost is the criterion.

The fundamental consideration related to the operatio-
nal aspects of the storage unit 1s the occurrence of over-
flows. The overflows occur whenever the incoming runoff
volume exceeds the available capacity of the storage device.
On an event basis, the probability of having an overflow is
directly dependent on the value of the available storage at
the end of the previous event. The actual value of the
previously available storage is unknown and can only be

described through a probability distribution. However,
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consideration of the extreme storage conditions, 1i.e.,
previously empty or full, will establish the envelopes
within which the system operates to allow an assessment of
the range of parameters to be expected.

While the overflow distribution allows the estimation
of the probability of overflow for an event, this is of less
interest than the study of the long-term behavior of the
system. The long-term behavior is related to the percentage
of the runoff volume that is captured by the device over a
long period of time. The simulation models STORM and SWWM
study long-term behavior by simulating the system with a
runoff record, generated from actual rainfall data.
Generally, only one year of operation is simulated due to
the high cost of running these programs. A relative
frequency analysis of the captured volume estimates the
percent of volume captured for a specified storage capacity
and withdrawal rate. Simulation of the system for different
combinations of storage and withdrawal rate allows the
definition of a storage-treatment isoquant. A
storage-treatment isoquant 1is the locus of storage and
treatment, or withdrawal, rates that provide a certain level
of volume control.

Storage-treatment isoquants in simulation studies are
obtained by interpolating curves through the plotted
frequencies of overflow for values of the storage capacity

and the treatment rate. The statistical model proposed in
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this work will use the ratios of expectations as a measure
of the percentage of volume control. This is defined as the

flow capture efficiency.

4.2 Flow Capture Efficiency

The fraction of the part of the runoff which arrives at

the unit but 1is not captured 1s defined as:

th
i
=it
M
0| g
[

(4.1)

[}
[aS

£ <1

That 1s, f represents the long-term fraction of the
runoff not captured by the detention unit. It is defined as
the ratio of the expectation of the overflow from the stor-
age unit, Y and the expectation of the volume of runoff %
arriving at the unit.

The fraction f can be interpreted as the probability of
having an overflow from the system, or the percent not
captured. Then 1-f represents the probability of not having
an overflow, or flow capture efficiency. The concept of
flow capture efficiency has been employed by Heany et al.,
(1977), DiToro and Small (1979), Hydroscience (1979), and
Goforth, et al. (1983).

The value of E[Y] is obtained from the distribution of
the overflow:

E[Y(n)]S(n-1)=so] = gny(y) dy + OP[Y(n)=0]S(n—l)=so] (4.2)
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The distributions for Y(n) have been obtained in
Chapter III. The particulay expression to be obtained for
the expectation depends on the set of distributions that
apply for the given condition. Table 3.1 shows that for all
cases there are three conditions depending on the relative

value of s b, and kl. Three equations for expectation

o’

will be obtained, each corresponding to a given condition.
The continuous part of the three probability density

functions obtained 1in Chapter III for Y(n) will be denoted

here as follows:

£, = Equation (3.9)
£, = Equation (3.10)
£y = Equation (3.11)

Expectation for condition b < - kl’ s < -kl
For this condition Equation (3.9), (3.10), and (3.11)
are used, and the expectation is obtained through Equation

(4.2), which yields:

. b K-, o
BLY(n) [S(n-1)= s 1= J17yriay +f yfody +/% yr.dy (4.3)
o7 ot kb ki-s. >

The integration yields:

*

E[Y(n) |S(n-1)=so} ;=§‘ {exp(-as ) + “Ta expl-ab -% (b-s ) I}
- mg 5 b<=ky, s <=k (4.4)



110

where mp = E[YI], as defined in Equation (2.43); H* is
defined in Equation (2.82); k, = (a—c)xc, and k, = ax,.

It 1s noted that Egquation (3.8) 1is contained in
Equation (4.4). Using Equation (3.7), Equation (4.4) can be

expressed as:
- = = 1 - = 1 -
E[Y(n)|8(n-1) = s 1 = LP[¥(n)>0|5(n-1) s, - mp (4.5)
The volume fraction not captured is given by:

ELY(m)IS(n-1) = s 1_

1 (4.6)
Tz Tz

M
P[Y(n) >0 |S(n-1)] = S 52
where m, = E[Z]

If, instead, the total runoff volume E[Xl] is used to

define the fraction not captured the expression becomes:
aE[Y(n)|S(n-1) = sO] = P[Y(n) >0|8(n~1) = s0] - amp (4.7)

It is noted that o= l/E[%_].
Equation (4.7) can be modified further by using the
1
relation mp = 3T My, from Chapter II, to obtain

oELY(n) |S(n-1) = s 1 =am; - P[¥(n) = 0[S(n-1)= s 1 (4.8)

Z

Considering the special case wherein m, = 1/0, that is,

E[z] = E[XlJ, Equation (4.8) yields:
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oE[Y(n)|8(n-1) = s J= P[¥(n) >0[S(n-1) = s (4.9)

which indicates that the fraction not captured is equivalent

to the probability of having an overflow. This is also true

for Equation (4.7), but there the probability is reduced by

the ratio of the mean value of park storage volume and the

mean value of runoff.

. > - < _
Expectation for condition b2 1(1z s ~-K

1
For this condition the expectation is given by:

Kk, -g "
ELY(n)|S(n-1) = 5.1 = /* f,dy + [ yEady (4.10)
° o ¢ *1-84 3

Integration, and division by m, wlll produce the following

expression for the fraction of the load not captured:

E[Y(m)S (n-D=s J_ al

™, : =ﬁz{exp[gb- %(b-so)] - expl Iaso-(g—%)kl]} +

B%Z{e)(p(—aso) +9\?exp[§so + ((x+g—) k13- I ; (4.11)

To obtain the corresponding expression of the fraction

not captured My is replaced by 1/@ in the previous

equation.
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Expectation for condition b > - kl, S, > - kl

For this condition the expectation is given by:

E[Y(n)|S(n-1) = so] = gwyf3dy (4.12)

Integration, and division by m, yields the fraction of the

load not captured as:

E@|Sth-D=s ]_ H a__ . 1
s ol = 5, Gexplaps Llo=s )] - Lexples,)) (4.13)

Substituting 1/a for m, above will yield the fraction
not captured in terms of the total runoff volume. Comparing
this equation with Equation (3.13) it can now be expressed

as:

E[Y(n)m;(n-l)=soj= ‘E%ZP[Y(nDOlS(n—l) =s_1 (4.14)

It is noted that g < 0.

4.3 A Special Case

For the special case considered in section 3.4 (¢ + o ,
5 = Xé) Equation (4.14) is the only one applicable because

k1 = 0. The equation 1is now transformed to:

a E[Y(n)|S(n-1) = s,d = PLY(n)>0[S(n-1) = 5.1 (4.15)
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The right-hand side of the equation is the probability
of having an overflow. From Equation (3.14) this was called
the exceedance probability, so that the fraction of the load
not captured 1is equivalent to the exceedance probability,
for the special case. In effect; f =e¢ . For the general
case the relationship 1s not a direct equivalence. As an
illustration consider the equation for the fraction not
captured for the first condition, namely Equation (4.6).
Taking the probability of having an overflow as being the

exceedance probability the equation is written as:

f = _E_ E& (4.16)
alfly my,
If the total runoff volume is considered, as given in

Equation (4.7), the relationship becomes:

£ = e-omg 4.17)
Where ft refers to the fraction of the load not captured in
terms of the total runoff.

The fraction not captured is seen to be related to the

flow capture efficiency and the statistics of the runoff

process.

4.4 Equations for Flow Capture Efficiency

Equations have been derived for the estimation of the

long~term fraction of the runoff not captured by storage.
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These are used to estimate the flow capture efficiency. Two
definitions of flow capture efficiency are possible - one
corresponding to Mg, the mean runoff volume collected by the
storm sewer; and another corresponding the E[Xl] = 1k , the
total mean runoff volume, of which only a certain fraction
is available for storage. The capture efficlency using m

Z
is defined as p, and 1s given by:

1-f =p (4.18)

The capture efficiency using E[Xl] is called the total cap-

ture efficiency, and 1is defined by t through the relation:
1-ft = (4.19)
For each of the conditions in Section 4.2 an equation
for flow capture efficlency is obtained. These are shown in
Table U4.1. From these the treatment rate and storage capa-~

city are estimated.

4.5 Storage Estimation

The equation obtained for the flow capture efficiency
serve as the basis for estimating the storage capacity and
treatment rate necessary to obtain a specified level of
performance, in terms of the capture efficiency. The locus

of storage capacity and treatment rate combinations that
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Table 4.1

Equations of Flow Capture Efficiercy

Capture Efficiency Total Capture Efficiency
Condition o= Pr =
b, s < -k L P P
* "o 1 am, 1 1
2 1 1
—— - = P 1-aP
S < —kl am, m, "2 2
b, s >k 1-Lop l1-aP
’ ! m, 3 3

P2=}}{—§{f<p[gb -—,} ® - So)] - e@ligso - (g -?kﬂ}
I P

. 1
Py=H {% exp [gb - L (- s)] - g ex (gs)}

1
o

M7 = T Talo 5 + B) exp(- occxc)
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produce a specific value of the capture efficiency is called
the storage/treatment isoquant. The storage/treatment
1soquant 1is obtained from the derived equations by solving
for the storage capacity in terms of the treatment rate, the
capture efficiency, and the runoff parameters.

The isoquants are conditioned on the value of S4s the
previously available storage capacity. Because this value
is not known with certainty the isoquants are determined for
specific, assumed, values of 8¢ Since OgsOSb the two
extreme points of the isoquants corresponding to previously
empty and previously full conditions can be obtained.

Intermediate isoquants can be obtained by letting s _ = §b,

o
where 0<6<{l. For a value of §= 0 no available storage space
remains after the end of the previous event. For §= 1 the
full storage space is available at the end of the previous
event. For all other values of an intermediate condition
is obtained.

The 1isoquants are defined by the requirement that the
storage capacity provides a desired level of capture effi-
clency - an acceptable level of performance. Values of the
storage and treatment rate that provides this level of
performance will trace the isoquant. In a general sense
defining the 1soquant corresponds to finding the roots of

the following equation:

h(b,08) =0 (4.20)
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The above 1is an homogeneous function of the storage

capacity and a parameter set 6= g[a, o (or ;%), o, By v X,

c, 81, The expressions for Equation (4.20) depend on the

particular condition considered.

4.5.1 Storage equations for condition b <-kl, S, <—k1

From Table 4.1 the expression that defines the

isoquant, written according to Equation (4.20), is given by:
P, (&) -pa m, =0 (4.21)

Where Pl(éb) is the expression for P1 evaluated at S, = §b,

and is given by:
* aa Y
P,(6b) = 1 - H {exp(-asb) + =exp [—(cwg(l—cs)) bl } (4.22)

The corresponding expression for the total capture

efficiency 1s given by:

P, Gb) - =0 (4.23)

If 1initially the tank 1s empty, then §= 1, and Equa-
tions (4.21) and (4.23) can be solved explicitly for the

storage capacity to yield:

(4.24)

1 B
b= a'ln{(otat +B)(1- uomz)] T
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for the capture efficiency, and:

=1 B _ (4.25)
b Otln[(oca +B)(1—pt7] e

for the total capture efficiency.
If initially the tank is full, then §= 0; and Equations

(4.21) and (4.23) can be solved explicitly to yield, respec-

tively:
~ B ya 4.26)
b=—=2 In - (
(oa+vy) 1-H- Otme)Y
and
X
b=o—=a _ 1n .____,r__H’ma (4.27)
(a+7) (L -H- o)y

It 1s noted that when the tank is initially empty, the
expressions obtained in Equations (4.24) and (4.25) are not
in terms of Y, the inverse of the mean of the interevent
time. This is so because a tank initially empty will remain
empty until the next event arrives, and the process will not
be a function of interevent time statistics. This holds
true for all situations.

For the intermediate cases (0<8<1) no explicit solution
is possible and the value of the storage capacity must be

obtained by an appropriate numerical procedure.
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4.5.2 Storage equations for condition b>-kl, SOSrkl

For this condition Table 4.1 indicates that the

isoquant for the capture efficiency is given by:

1
3~ P,(8b) -em, =0 (4.28)
Where P2(5b) is the function P2 at S, = 8b.

For the total efficiency the isoquant is defined by:
Li-0) - B6D) = 0 (4.29)
o 13 2 *

If the storage is initially empty, §=1 means that so=b.
In this case, however, because of the constraints associated
with the given condition the only possibility is that
§,=b=-k;. With these values Equations (4.28) and (4.29) can

be solved explicitly to yleld, respectively:

1 B8
b—aln[(ua+6)(l_ umz)] - ax, (4.30)
and
1 8 )
b o in [( aa + B) (1 - pt) ] &, (4.31)

The above expressions are the same as Equations (4.24)
and (4.25). Equations (4.30) and (4.31) are used to obtain

the value of the treatment rate at b = -kl.
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If the unit 1is initially full, §= 0, and this allows
for an explicit solution of the isoquant 1in terms of the
storage capacity. The solution for the capture efficiency
1s given by:

a

- 1_ :
b = D In{(3-p mZ)Hia+ expl(g + g_)klj _

(4.32)
YH* : oa Y
—— + = ~
Sl L1 - expl(g + a)kl]]}
For the total capture efficiency the term (&"'pmz) is
replaced by the term-l(l~ot) in the previous equation.

a

4.5.3 Storage equations for condition b>-kl, so>-kl

The expression in Table 4.1 for this case yields, for
the capture efficiency and total capture efficiency, respec-

tively:

(1 -p)m, - P3(sb) =0 (4.33)

and

(1 - p,) - abylsb) = 0 (4.34)

Where P3(6) is the function P3 at s = éb.

If, initially, the storage unit 1s empty, then §= 1,

and Equations (4.33) and (4.34) are solved explicitly to
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yleld, respectively:

b=éln[— g(oa + e)él—p)mz_] ; B_}gc (4.35)
and
b=éln[—g—(—q’L§é(l—:—pt)—] - & (4.36)

If the tank 1s initially full, §= 0, and Equations (4.33)

and (4.34) can be solved explicitly to yileld:

= a Y (1 ‘p) + i
b — 1n[——mZ—- 1—] (4.37)
and
-_ 2 ¥l -p) Y
b= P In [ et t ag ] (4.38)

This completes the development of the formulation for
isoquant estimation. The equatlons obtained are termed
"hydraulic" because they treat runoff volumes only. Their
application is illustrated in a subsequent chapter. Lastly,

the special case is considered.

4.6 A Special Case

The special situation is the simplified case that has

been defined previously, namely, that in which ¢ 5, , X, =

2
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X2. Because kl = 0 for this case, only the equations given

in Section 4.5.3 are applicable, and only those for the
total capture efficiency. The general expression, Equation

(4.34), applies, but now P3(6b) is given by:

- By - L 2 expl-(ot Y(1- 4,
PB(ab)—m{ae@( ash) + 2 exp[-(a+ L1 8)b] } (4.39)

For the initially empty condition, Equation (4.36), the

expression now becomes:

1 8 (4.40)
b o In [ (@ F T -Dt5 }

And, for the initially full storage condition, Equation

(4.38), the expression becomes:

b = (4.41)

—& 15 cap
aa + vy (ta+B)(oa+tyd -P) - By

The special case is a much simpler situation and repre-
sents a considerable saving in computational effort over the

general case.
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CHAPTER V

Pollutant Load Model

5.1 Introduction

The water quality aspect of urban stormwater runoff is
recelving considerable attention. It has become evident
that runoff is a source of pollutants comparable at times to
other major sources of waste flow. The fact has been
established from many assessment projects, like those of the
University of Cincinnati, 1970; Sartor and Boyd, 1972;
McElroy et al., 1976; Heany et al., 1977; Jewell, 1980;
Water Planning Division - E.P.A., 1983; and many other
regional and municipal assessments.

The Natlonwide Urban Runoff Program (NURP), conducted
by the Water Planning Division of the Environmental
Protection Agency (1983) has addressed the planning and the
quantification problem related to urban stormwater pollu-
tion. They have identified the following pollutants as

characterizing runoff from urban areas:

Total Suspended Solids,

Biochemical Oxygen Demand,

Chemical Oxygen Demand,

Phosphorus (total and soluble),

Nitrogen (total kjeldahl and nitrate/nitrite),

Copper, Lead, Zinc, and
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Coliforms

On a national basis the major impacts seem to be
assoclated with metals, solids (including organic), and
coliforms. The possible impacts on the urban and receliving
water environments are shown in Table 5.1.

The composition of the pollutant load from an urban
area 1s a function of land use - its nature and distribu-
tion, of socio-economic factors, of local waste management
policies, and hydrologic factors. These include a wide
variety of interacting elements that make any location
unique in terms of the water quality response to hydrologic
inputs.

The major processes by which pollutants move through

the urban environment are the following:

1. deposition of pollutants on the surface from
the action of wind, weathering, erosion, and
other sources;

2. removal of a part of the material by the action
of runoff - dislocation by impact and transport;

3. collection of pollutant-laden runoff by the sewer
system; and

4, transport through the sewer system.

The quantity of material that 1s washed off during any
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Table 5.1 Some Instream Impacts of Stormwater Pollution

1. Aesthetic Deterioration
2. Dissolved Oxygen Depletion
Sedliment Deposition
. Excessive Algal Growth
. Public Health Threats

3
y
5
6. Impaired Recreational Value
T. Ecological Damage

]

. Reduced Commercial Value

Adapted from Hydroscience (1979).



126

glven event 1s called the pollutant load. The locading from
a particular area depends on the frequency of occurrence of
the hydrologic events, the source area, the stormsewer
system configuration and capacity, and the particular waste
management program implemented at the site. The latter
includes street Sweepling efficiency, a parameter often used
in load assessment.

Within an event the hydraulie and physico-chemical
Interaction between runoff and pollutant will determine the
real time variation of concentration. The graph deplcting
the variation of concentration within an event is called a
pollutograph. The pollutograph, either obtained from a
sampling study or generated from a simulation 1s a useful
indicator of the quality response of an urban area to a
hydrologic inputf However, the response to any event 1is a
function of event parameters. The relevant parameters are,
to a great extent, random variables 1in the sense that it
cannot be predicted, in a deterministic fashion, which
conditions at the beginning of an event would give rise to a
particular pollutograph. The variability in the rates of
pollutant deposition for all constituents, the land use
variations introduced because of development, the temporal
and spatial varlability of rainfall, the fluctuations 1in
sweeping efficiency ~ all introduce a high degree of uncer-
tainity in the attempt to estimate the actual amount of

removed pollutant.
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A consistent and representative data base will reduce
some of the uncertainty associated with pollutant 1load
assessment but will not eliminate 1t completely. However
costly, sampling programs are necessary for an adequate
evaluation of any particular site. Care must be excercised
in the use of sampling data, though. Regressions of water
quality data with a given parameter, or a given set of
parameters, however useful, are valid only for the condi-
tions that gave rise to the given set of sampling results.
If the conditions change then the coefficlents in the
regression will change also.

The point to be emphasized is that the urban pollutant
loading mechanism is driven by factors that can be classi-
fied as random. Treating some of the relevant parameters as
random variables provides additional insight into the urban
runoff pollution problem. The use of statistical techniques
will also suffer from limitations, however. The parameters
of the statistical formulation require a relatively large
data base in order to obtain statistically significant
estimators. Also, most statistical formulations are based
on a simple representation of the physical system.

All methods operate under certain assumptions and limi-
tations. The use or development of a particular methodology
requires an adequate understanding of these limitations in
order to assess the reliability of the model. This work

will use a statistical technique to assess the water quality
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effects from the urban area. The main advantage of the
statlstical approach 1s that it considers explicitly the
underlying randomness in the parameters of interest. An
added advantage 1is that it allows for the assessment of the
long-term behaviour of the system. This 1s a feature of the
statistical methodology that is particularly useful because

it eliminates the need for costly and expensive simulations.

5.2 Stormwater Load Assessment

Most of the load models available for planning formula-
tions are based on a relatively simple conceptualization of
the runoff process. The simplification is necesgsary due to
the nature of the planning process itself. The planning
process 1s concerned with the system as a whole rather than
with the specific mechanics of the particular elements. The
mechanics are usually simplified to account only for the
major features of the process. This maintains the formula-
tion at a manageable level, allowing for the study of system
behaviour under a wide range of conditions.

The efforts at load modeling have considered the rela-
ted processes discussed in the last sectlon. Good reviews
of the availlable techniques for modeling the urban pollution
processes are provided by Jewell (1980), and Patry (1983).
Thelr efforts will not be duplicated here. However, the
formulations relevant to the present work will be reviewed.

The first process of concern 1is the accumulation
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process. The major parameter assoclated with material
accumulation is the time between runoff events, or the time
between street sweepings. Linear and non-linear rates have
been employed. A general expression for linear rates is

given by:

0 ~ o

Where Po(n) = pollutant load available at the start of
the nth runoff event;
p (m)

P
(n—l)E"'D and n®? event;

pollutant rate of accumulation between the

X3(n) = interevent time;
d(n—l)= pollutant load left over from the (n—l)St
event.

Equation (5.1) has been used by a number of simulation
models for load assessment, notably the models STORM (U.S.
Army Corps of Engineers, 1977) and SWWM (Huber et al.,
1975). In these models the rate of load accumulation,
modified for street sweeping, 1s assumed constant. However,
Sartor and Boyd (1972) have shown that the accumulated
solids loadings for various cities in the U.S. 1is not linear
with respect to the interevent time. This 1s shown in
Figure 5.1. After two or three days the’varying rate of

accumulation tends to drop off.

The load buildup may better be described by
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(n) _ _ _ (n)
P Pomax L1 - exp( k X377)] (5.2)
Where P(n) = load available at start of event nj;
Pomax = Maximum allowable accumulation;
ko = rate coefficient;
X%F) = Interevent time.

Equation (5.2) appears more realistic because it limits
the value of the accumulated load rather than allowing an
unbounded increase. Equation (5.2) has been employed by
Ormsbee (1984), among others.

However, Whipple and Hunter (1977) have shown, for an
urban area belonging to the Saddle River watershed in New
Jersey, that the interevent time may be a poor indicator of
the actual BOD loading. While the data is not sufficient to
allow for a statistically conclusive assertion regarding the
relationship between interevent time and subsequent loading,
the general use of equation (5.2) and other non-linear
expressions is more or less established.

The basic difficulty with these type of equations is
that they are a deterministic formulation of what 1is,
basically, a random process. Even 1f the total amount of
pollutants available at the start of an event could be
predlcted wilth certainty the unquestioned randomness asso-
clated with the runoff process would invalidate the univer-
sality claims of any deterministic formulation. Consider,

for example, the rainfall intensity. Both the energy
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necessary to dislodge pollutant particles and the volume of
runoff needed to dilute the pollutant are functions of the
rainfall intensity. The rainfall intensity shows random
spatial and temporal variations during an event. The actual
pollutant load will reflect these variations. These varia-
tions, whlle showing up in actual data, have not been
accounted for in commonly available models.

The type of formulations described by Equation (5.1)
and (5.2) are, nevertheless, convenient for the continuous
simulation of the urban runoff pollution process. Thelir use
in a standarized model should not be construed as an endor-
sement for the universal applicability of the principles
involved in the formulations, even if data from certain
areas appear to be described well by them. No doubt
improvements will result as consistent and thorough data
bases are created.

The washoff process has been the subject of numerous
modeling efforts (see Jewell, 1980). The simplest formula-
tion is that of the loading funetion (McElroy, 1976).
Loading functions present average daily pollutant loads in
terms of street curb length. The results serve as an
overall assessment of general conditions, but are not
event-based formulations, such as the formulation of Young
et al. (1979), and thus are not useful for detention storage
design.

The most commonly used approach is the first order load
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model. It is employed 1n the major stormwater planning
models available at present (STORM, SWWM), and others, such
as Medina (1982). The formulation assumes that the rate of
washoff at any time t 1is proportional to the load on the
watershed that 1s avallable for washoff. This 1s expressed
as

TE) - kq(t) P(£) - AVAIL (5.3)

Where P(t) amount of pollutant remaining after time t

K = proportionality constant

q runoff rate

AVAIL

availability factor
The parameter AVAIL, a function of rainfall intensity,
represents the fraction of the pollutant that 1is available

for washoff. The usual form of the expression is

AVAIL = a + bR® (5.4)

Where a, b, and ¢ are constants and R 1s the runoff
rate. The values of a, b, and ¢ have been found to vary
between locations (Roesner, 1982). It 1is conservative to
use AVAIL = 1.0. Likewise, the parameter k i1s a function of
the runoff Intensity. To determine K it has been assumed
that a uniform runoff of 0.5 in/hr will wash off 90% of the

initial pollutant load in one hour. The value of K 1is
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obtained from the solution of Equation (5.4), which is
obtained from

P t

dP _
1{ T =K Jo- qdt (5.5)
o]

The integration yields:

Pé—t)= exp(-KV,) (5.6)

o
where

t
Ve = § adt (5.7)

PO 1s the amount of pollutant on the surface drainage
area at the start of a runoff event, and Vt represents the
total runoff volume up to time t. Equation (5.6) gives the
fraction of pollutant load remaining on the surface. The

fraction of the pollutant load washed away is given by

o(6) =1 - B8 1 exp(okv, ) (5.8)
o

Substitution of ¢(1) = 0.90 and V1 = 0.50 in. in Equa-

tion (5.8) yields for the value of K:

K = 4.6 1n.7} (5.9)
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Some verification for this rate was obtained by Sartor
and Boyd (1972). The value given in Expression (5.9) 1s

suggested for urbanized areas. For pervious areas a value

of K

1.4 is suggested. Roesner (1982) states that a value
of K = 2.0 gave better results for the Detroit area.

Needless to say, the actual value of K is site speci-
fic. Factors such as the shape and extent of the catchment
area, type of gutters and stormwater inlets, time of concen-
tration, and the nature of the pollutant affect the parti-
cular value of K. However, the value of K given in Expres-
slon (5.9) seems to be generally accepted, in the absence of
better estimates. The models STORM and SWWM use this value;
also the University of Cincinnati (1970), Nix (1982), and
Ormsbee et al. (1984).

Patry (1983) has utilized procedures suggested by Alley
(1981) to obtain optimal estimates of K in terms of the
minimum sum of squares of deviations between fitted and
observed 1load characteristics. Analysis for suspended
solids and chemical oxygen demand showed varying values of
K. For thirteen events the average value of K was 11 in_l,
which is higher than the usually accepted value.

Equation (5.8) can be written as

P - P(t) = Po[l - exp(—KVt)] (5.10)

Define
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L(t) = Po— P(t) (5.11)

Then L(t) represents the amount of pollutant washed off
the catchment at time t. Equation (5.10) expresses the
"first-flush" effect. The greater the K value the smaller
the required volume of runoff will be to achieve the same
loading. The first-flush effect 1s the situation wherein a
large portion of the available pollutant load is washed off
the surface during the early stages of an event. While this
has been observed to occur at certain locations it is by no
means a general condition.

For continuous simulation and the construction of so-
called pollutographs the first order model 1s written in
discrete form (Jewell, 1980):

Ly =M [1 - exp (-Kr_28t)] (5.12)
Where: Ln = mass of pollutant washed off the subcatchment
during simulation step nj;
Mn = pollutant mass available at start of simula-
tion step nj;
r, = runoff rate during step n;
At = simulation time step; and

K = washoff decay coefficient
Procedures for constructing pollutographs are illustra-

ted by Wanielista (1978), and Roesner (1982). Jewell (1980)
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has shown that the total pollutant mass obtained from an
event using Equation (5.12) is equivalent to using the model

with the initlal available mass and the total runoff volume:

TZI
X, = r.A t
i=1 1

The total event pollutant load is then given by:
L = Po[l - exp (-KX;)] (5.13)

Not all areas exhibit first order pollutant washoff.
Equation (5.13) is in fact an abstraction of a complex
physical process. In areas with adequate data regression
analysis may be preferable, and represents the other major
approach to pollutant load estimation. Statistical regres-
slon procedures chose the most significant variables to
represent the loading equation. Jewell (1980) has found
that for suspended solids a regression of the following type

gave the best statistical result:

_ cl c2 c3
SS = ¢ t,77 t, I (5.14)
Where: SS = suspended solids storm event loading (lb/ac);
€, = number of dry days;

ct
n
)

duration of rainfall, hours;

average runoff intensity (in/hr); and
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Co’ Cys Co, c3 = regression constants.

Other authors have considered other variables for other
constituents, but the overall approach is similar.

Jewell (1982) claims that Equation (5.12) cannot be
statistically verified as portraying the stormwater washoff
process. Hls conclusions were based on regression analyses
of data from numerous events and locations. His analyses
also seemingly showed that no specific regression formula-
tion could be used for all areas and that within areas
different pollutants sometimes required different formula-
tions. Based on his observations, Jewell (1982) recommends
the use of regression analysis with site-specific extensive
data sets gleaned from thorough sampling programs as the
appropriate modeling methodology. However, in many situa-
tions this would represent the idealistic rather than the
realistic approach to modeling. The major difficulties in
using the methodology proposed by Jewell are the limitations
inherent in regression analysis, the usual lack of data in
many locations, and the fact that the water quality problem
in urban areas has random components. These aspects have
already been commented upon earlier in this chapter. The
changing nature of the runoff environment requires the use
of a methodology that can, in some way, 1Incorporate these
variations.

The development of adequate data bases, coupled to the

formulations of physical-statistical models is perhaps the
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best way to approach the urban pollutant loading problem.
Within the planning framework Equation (5.13) 1is useful
because a complex loading model is usually not required at
the typical planning scales. Since some of the study areas
are ungaged some sort of general methodology needs to be
employed. At the present Equation (5.13) uses an acceptable
formulation which has provided reasonable results.
Consideration has also been given to the hydraulics of
pollutant transport through the system. Because the plan-
ning methodology to be developed here will not specifically

address these processes, no review 1is undertaken.

5.3 Pollutant Loading Effects on the Storage Capacity

The pollutant 1loading generated by the Stormwater
runoff 1is transported through the stormwater system to the
storage unit. If the storage capacity is exceeded an over-
flow results in which a certain fraction of the load 1s lost
to the receiving waters. The stored load 1is removed at a
certain rate for treatment. The storage unit 1tself can
function as a treatment device.

Medina (1981) has studied the operational behaviour of
the storage device as a treatment unit using mathematical
models derived from conservation principles. The system
concentratlion response for various input concentration
forcing functions and different mixing conditions was

analyzed. Removal mechanisms were first order decay and
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sedimentation.

A number of physical/chemical treatment devices can be
used for the treatment of runoff. Relevant operational
characteristics can be found in Hydrocomp (1979).

The statistical methodology proposed here cannot take
the specific operational characteristics of the storage unit
into account. It must account for these, if possible, in a
simplified fashion. Most predictive methodologies simplify
some of the relevant processes. Usually it 1s assumed that
the runoff load generated arrives intact at the storage
unit. Neglected are the chemical interactions, sedimenta-
tion, re-suspension, and decay which may occur as the pollu-
tant load is transmitted through the stormsewer.

The statistical method employed by Ditoro and Small
(1979), and adopted by Hydroscience (1979), employs the

folloWing pollutant concentration function:

C(t) = Cy+ (G, = C) exp(- g) (5.15)
P
Where
C(t) = pollutant concentration at time t;
Cp . peak runoff pollutant concentration found at
the start of the storm;
CO = pollutant concentration found after the first

flush subsides;
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Kp = rate of decay of the first flush peak.

Equation (5.15) is analogous to the Horton infiltration
equation in that the concentration decays to a constant
value C0 as time 1increases. The magnitude of the first
flush effect 1s determined by the ratio Cp/Co. If the ratio
1s unity then a constant concentration is obtained from
Equation (5.15). The larger the value of the ratio the more
evident the first flush effect.

The measure of system performance used in the statisti-
cal method is the long term fraction of the load not captur-
ed, and has been defined as the expectation of the runoff
load that overflows divided by the total runoff load (DiToro
and Small, 1979). If a uniform runoff concentration is
assumed then the fraction of the load not captured is equi-
valent to the hydraulic fraction because there i1s no first
flush effect. The storage requirement for a given with-
drawal rate will not change with the inclusion of this mean
concentration. If the first flush effect exists the device
i1s more efficient, for a given storage volume, at capturing
the pollutant load than the hydraulic load. This means that
first flush pollutant loadings require less storage for a
given capture percentage than loading wherein the concentra-
tion 1s uniform.

To assess the relative influence of first flush effects
DiToro and Small (1979), and Hydrocomp (1979), have used as

the indicator the ratio of the actual mean storm load to the
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storm load predicted by using the mean concentration and

runoff volume. The mean runoff load is found from:

Mg = [ / [ C(t) aarp(d) fgla) dt ad dq
qg=0 d=0 t=0 (5.16)

o)

An the mean concentration from:

d
o= [ i Cdt) fD(d) dt ad

d= 0 t= 0 (5.17)

The parameters of Equation (5.16) and (5.17) have
already been defined in Chapter I. The concentration C(t)
is obtained from Equation (5.15).

The mean concentration, as defined by Equation (5.17)
1s obtained by averaging over the event duration 4. This
cannot be interpreted as a mass average because the area
beneath the C(t) curve does not yield the total pollutant
mass. The mean concentration thus defined does not have the
physical meaning that mass-based averagling provides.

Using the averages obtained from Equation (5.16) and
(5.17) the load ratio 1s defined by:

"R

Load ratio = ——

c VR

where VR 1s the average runoff volume.
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Figure 5.2 shows the load ratio as a function of
relevant event parameters. It has been assumed that runoff
flows and durations are 1independent and exponentially
distributed variables. From Figure 5.2 the maximum devia-
tion of the load ratlio due to first-flush effects appears to
be on the order of 0.70.

First flush effects on interceptor performance are
shown in Filgure 5.3 1in terms of the effect on the long term
fraction of the load not captured.

The actual assessment of the relative magnltude of
first flush effects 1s difficulted in practice by the fact
that pollutographs may not exhibit a fixed concentration
profile for all recorded events. The classification of
these effects as small, moderate, and large may be somewhat
artificial. In the absence of adequate information moderate
conditions are usually assumed.

The present work will use Equation (5.10) as the basis
for incorporating uneven loading effects on the storage
equation.

If it 1s assumed that the runoff concentration is
uniform and 1independent of the runoff volume then the
fraction of the pollutant not trapped by the storage device
will be the same as the fraction of the runoff volume not
trapped by the device. This 1s expressed as follows:

Fraction of load not captured =:9ﬁh£zl
% £[7]
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Hydroscience Model { After Hydroscience 1979).
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where
Eb = mean pollutant concentration;
E[Y] = expected value of the overflow;
E[Z] = expected value or the runoff volume entering

the stormsewer.

Thus the equations already obtained for the fraction of
the runoff volume not captured will yleld the same storage
requirement as if the storage tank is considered a load
control device. A non-uniform load distribution will alter
storage requirements because a greater proportion of the
load 1s obtained for the same runoff volume. These effects
are accounted for by the use of Equation (5.10) in the

following form:

L =P, [1 - exp(-kZ)] (5.18)

Here Z 1is the runoff volume arriving at the storage
unit during a given event. As discussed earlier PO, the
load available at the start of the event, 1s a function of
the interevent time and the left-over load from the previous
event. Street sweeping should reduce the accumulated
values, however, 1ts effectiveness 1s highly variable. In
fact, the Natlonwide Urban Runoff Program (Water Planning
Division - EPA, 1983) has concluded that street sweeping is
generally 1ineffective 1n reducing pollutant 1loads. It is

therefore not conslidered in the formulation.
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Because of the randomness involved in the pollutant
accumulation process it is assumed that 1in the long run more
or less an average amount of pollutant should be present
‘before any event. 1In effect this 1s suggested by the fact
that non-linear accumulation rates seemingly become asymp-
totlc after a few days, these beilng on the order of the mean

interevent duration.

5.4 The Pollutant Load Model for Detention Storage

The water quality analysis is formulated in terms of
the first-order load model of Equation (5.10). It estimates
first-flush pollutant loads where the effect 1s evident.
The analysis of the pollutant trapping effect of the storage
device is formulated through the first order model. As has
been shown, the pollutant washoff from the surface can be

expressed in the following manner:

L = Po[l— exp(-KVt)] (5.10)

It 1s assumed that the 1initially available pollutant
accumulation 1is constant for each event, or that it can be
represented by an average value. As 1t has been shown that
the evidence suggests that street sweeping does not greatly
affects accumulation rates, and that the accumulated load
reaches an asymptotic value after a few days, the assumption

is reasonable. The runoff volume, Vt’ is treated as a
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random variable.

The model represented in Equation (5.10) is adopted to
represent the amount of pollutant trapped by the storage
unit. The load washed off the ground surface 1is intercepted
by the inlets and passed down to the stormsewer, eventually
arrlving at the storage unit. Whatever the mechanics by
which the pollutants are transported through the system only
a certain amount of the load will be retained by a detention
unit. The pollutant trapping capacity of the detention unit
depends on the storage capacity available at the start of
the runoff event and the rate at which water is removed from
storage for treatment. If the total runoff volume 1is
smaller than the avallable capacity then all of the incoming
pollutant load will be trapped. If, however, the runoff
volume is larger than the capacity made available only part
of the load will be trapped, the remainder being dumped to a
receilving body of water.

During the event, while the available storage space 1s
being depleted by incoming runoff, it 1s also being augmen-
ted by the pumping of the stored water at the given treat-
ment rate. An overflow will occur only if the incoming
runoff volume exceeds the sum of the initially available
storage capaclty and the volume made avallable by pumping
over the time required to fill the basin at the incoming
runoff rate. If no overflow occurs then all the hydraulic

load, and hence the pollutant load, is captured by the unit.
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If an overflow does occur then the part of the load corres-
ponding to the runoff volume trapped by the unit is all that
is retained. The excess runoff is diverted to the recelving
water at a rate equivalent to the difference between the
runoff rate and the pumping rate. This is so because pump-
ing has been assumed to occur contlnuously over the event
duration. Even while the overflow is occurring runoff would
st1ll be entering the tank at the treatment rate to make up
for the pumped outflow. The duration of this event, and of
the overflow, 1s given by the difference between the event
duration and the time required to fill up the available
storage. For the purposes of pollutant load analysis this
additlonal incoming volume has been assumed to carry a
negligible load compared to the other volumes.

These considerations suggest the following formulation,
in terms of Equation (5.10), for determining the pollutant

load trapped by the storage unit:

Py {1-exp[-K(T + at )1} 1f 2 > T + at (a)

(5.19)

L(1b)

P0 [1-exp(-Kz)] if Z2 < T + at (b)

where: T = storage available at the start of the nth
event, whose distribution is given as Equation
(2.65) (inches);

Z = runoff volume which arrives at the detention
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unit, whose distribution is glven as Equation
(2.38)(inches);

a = vrate of water withdrawal from the storage unit
(inches/hour); and

t, = time required to fill up the available storage

(hours).

Equation (5.19a) corresponds to the overflow situation
wherein only the pollutant load corresponding to the hydrau-
lic load that fi1lls the available storage is retained. The
situation in (b) corresponds to that of no overflow and the
trapping of the totality of the pollutant load. As before,
stationarity of the process 1s assumed.

The time required to fill the available storage 1s used
to obtain the additional storage capacity that is produced
while the unit 1s filled up. It is necessary to account for
this volume because the non-linearity of the pollutant load
function may produce significant pollutant washoff over this
duration, and this would be trapped by the detention unit.

The complex mechanics of pollutant transport related to
the hydraulics of the stormwater system are assumed to be
represented by the lumped parameter K. The major interest
here is to assess the relative efficiency of detention units
in terms of the percent of pollutant load trapped by the
storage unit.

The variables T, Z, and to in Equation (5.19) are
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random variables. It is desired to obtain an expression for
the pollutant trap efficiency analogous to the expression
obtained for the hydraulic trap efficiency discussed in
Chapter IV. The corresponding expression for the trap

efficiency of pollutants is given by:

o, = E[L1/E[L] (5.20)

Where 02 1s the trap efficiency, defined as the ratio of
the expected value of the event pollutant load captured by
storage and the expected value of the total pollutant load.
The total pollutant 1load is defined as the load obtained
from the incoming runoff volume. It can be defined in terms
of the total runoff volume, Xl’ or the stormsewer runoff
volume, Z. In terms of the total runoff volume, the total

load 1s given by:

Lt,x = Po[l - exp(-KXl)] (5.21)
In terms of the stormsewer runoff volume the total load 1s

given by:

Lz = P [1 - exp(-Kz)] (5.22)
To distinguish between the two, the term of pﬁ)}s applied to

the trap efficiency in terms of the total runoff volume, Xl,



152

and Omz is applied to the trap efficiency in terms of the
stormsewer runoff volume, Z. As indicated earlier, if the
system inlet capacity 1s large both volumes will be about
equal.

This formulation entails the assumption that the runoff
volume arriving at the detention unit carries the pollutant
load corresponding to that volume, assuming in effect, that
no pollutant 1s lost in the neighborhood of the 1inlet or
along the stormsewer.

To obtain the expectations called for in Equation
(5.20) in terms of the appropriate random variables 1t 1is
first necessary to define the distribution of the time

required to fill the storage, to.

5.4.1 Definition of the time to fill available
storage, t
= !

The varilable to is a function of the storage capacity
avallable at the start of the event, the runoff intensity,
and the treatment rate. The storage capacity available 1is
filled at the net runoff rate, which is the difference
between the average incoming runoff rate and the pumping, or
treatment rate. A sketch of this process is shown in Figure
5.4. The average runoff intensity is the ratio between the

runoff volume and the event duration, given by:
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Figure 5.4 Definition Sketch for the Time Required to
Fill Available Storage



1= /X, (5.23)

The time required to fill the available storage space 1s

given by:
t o= L (5.24)

Because Z, X2, and T are random variables, to is also a
random variable. To obtain the distribution of to a derived
distribution analysis 1s necessary. This 1s complicated by
the fact that the random variables involved are defined over
specifiec regions, thus making necessary the formulation of
the distribution over several ranges of parameters. Because
the distribution of to is employed in the formulation of the
related distributions of the load model, and with the same
set of random variables, joint distributions of functions of
random varilables have to be defined, developing into an
unwieldy formulation that cannot be solved explicitly. For
this reason a simplification of Equation (5.24) is attempt-
ed.

Because the runoff volume in Equation (5.23), Z = Min

(Xl, cX2), the intensity term 1s broken down as follows:

X/ if X,/ <ec
1 XZ 1 XZ
i = (5.25)
c if X,/ > ¢
1% =2
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that 1is, the intensity term is elther a function of two
random variables, or a constant equivalent to the system
stormwater trapping capacity, c. It is desired to simplify
this arrangement by proposing that the intensity term be
redeflned in terms of two scalar terms, one corresponding to
the mean effective rainfall intensity, and the other to the
trapping rate c. This entails a redefinition of the inten-
sity term within the context of to, as it cannot be properly
called an intensity and be described by a constant value.
Henceforth this term is defined as the average rate at which
runoff fills available storage. Over the long run the unit
will fill at the mean runoff rate if the system has a large
capaclty or at the runoff trapping rate if the capacity is
limited, depending on which is greater.

Equation (5.25) is redefined as:

E[im] if 1 <e¢

m
1r = (5.26)
c if im > c
Where 1 = *1/x (5.27)
m 2
ip = mean rate at which the detention unit fills.

In effect, Equation (5.26) can be expressed as:

i = Min (E[im], c) (5.28)
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With the simplification, the rate at which the avail-
able storage 1s reduced 1s in terms of the mean effective
rainfall intensity, as long as the runoff trapping capacity
of the stormsewer system exceeds it, otherwise the system
capacity will control the runoff rate arriving at the deten-
tion unit. This avoids introducing additional random vari-
ables 1in the formulation. Because the general formulation
1s 1iIn terms of the expectation of related processes such
averaging is justified for representing the long-term rate
at which the unit fills.

The randomness assoclated with to is now related to the
variate T, the other terms in Equation (5.24) representing
the average rate at which T is depleted. The probabllity
distribution of to 1s now defined in terms of T. However, a
modification of Equation (5.28) is called for.

The intensity in Equation (5.24) must be greater than
the treatment rate a, otherwise the storage unit will never
£f111. This 1s demanded by the condition 2 > T + ato in
Equation (5.19a), for if Equation (5.24) is substituted in
the latter 1inequality it 1is obtained after some re-

arrangement:

Z -aX,>T (5.29)

Because T 1is a positive variate the implication is that:
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2/X, > a , (5.30)

and Z/X2= i.

‘ This condition poses no problem when ir= ¢, as 1t has
been assumed that ¢ > a. When 1r= E[im] it is required that
im> a , demanding that the expectation be a conditional
expectation. The mean runoff rate 1s now re-defined as a

condltional expectation, and Equation (5.26) now becomes:

El1 |1, >a] 1f 1 <ec

i, = (5.31)
c ifi1 >e

The task now 1s to obtain the expression for the
conditional expectation. Pirst, the distribution of 1m =
Xl/XZ is obtained. The distributions of Xl and X2 are
exponential, as given in Equations (2.13) and (2.18), res-
pectively. The expression for the cumulative distribution

of the average intensity is given by:

o
m
[
A
[y
—_—
1

= P[X;/%, < 1] (5.32)

g
—/
[
|~
[
—J
B

PIX, <1 X1, (5.33)
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yilelding the following expression for the cumulative distri-

bution in terms of the density functions of Xl’ and X2:
- iox2
P[im < io] = / / fX{xl) fy(x,) dx dx,
X, = X, X; =0 (5.34)

Substitution of Equations (2.13) and (2.18) in Equation
(5.33), and integration yields:

. - _ B - .
P[im S_ IO] = 1 —B-T—d—{; exp ( Ou‘{cio) H 10 Z 0 (5.35)
It is now desired to obtain the conditional distribution in
terms of im > a. This is achieved by normalizing the dis-

tribution within the restricted event space of im > a. The

necessary expression is given by:

P[imgioﬁibzzd

P[1 <i H_ > al] = - (5.36)
= o‘ m - P[%Eia]
Which is equivalent to:
Pli <i [|-P|i <a
Pli, <1, > al = [ m— o ] {0 ] (5.37)
P 1m.ia]

The expressions on the right side of Equation (5.36) are

evaluated with Equation (5.34), yielding:



159

- - Broa (1 - .
Pl <11 >al= 1 E:&q;exp[ (1-adox 1 51 > a (5.38)

o
The probability density function 1s now obtained by diffe-
rentiating the cumulative distribution. The operation

yilelds:

 y= 2B +oa) [x (B+ai ) + 1] . ‘
fimlﬁnia(lo)_ @ +vai )Eu exp[-(lo—a)a xc] ; (5.39)
o

0_
With the probability density function the expectation 1is now

obtained for the mean value of the average runoff intensity.

This 1s given by:
EL1 1, > al = [ i, 1y 1> (1) a1 (5.40)

Unfortunately, no explicit solution exists for the
previous 1integral. A numerical integration is employed to
evaluate the expectation. To simplify the expression the

numerical mean will be expressed as:
E[1m|im > al = I(a) s (5.41)
with I(a) corresponding to the expression in Equation

(5.40).

Equation (5.28) now becomes:
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1, = Min [I(a), cl (5.42)

Now proceeds the formulation for the expectation of the

pollutant load.

5.4.2 Expressions for the pollutant trap efficlency

The first set of expressions to be obtained correspond
to the expectation of the load as defined 1n Equation
(5.19). From the results of the previous section, wherein
to was defined as being equivalent to T/(ir-a), Equation

(5.19) can be written as:

Po{l- exp [-K(pT)1} if Z > pT

P [1 - exp(- KzZ)] . if 7 < pT (5.43)

Where p = iP/(ip-a).

By defining a random variable U

pT Equation (5.43)
can be simplified to:

Po[l— exp(~KU) ] if 2 > U
L = (5.44)

Po[l—exp(—KZ)] if Z < U

which 1is egulvalent to stating
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g(U) for zZ >U

L = (5.45)
g(Z) for Z < U

Where g( ) represents functions of random variables.

The objective is to obtain the expectation of Equation
(5.45). For this the joint distribution of Z and U has to
be defined. Since Z and U are independent variates because
Z 1s a function of X1 and X2, while U 1s a function of T,
the joint distribution 1s given as the product of the

marginal distributions, that is:
fz,u(z’“) = £,(z) f(u) (5.46)

which simplifies the analysis.

To obtain the expectation of Equation (5.45) it 1is
convenient to use the concept of conditional expectation
(Breipohl, 1970). Assuming, for the moment, that U has a
fixed value, say U= u, the conditional expectation of L is
given by:

o

u
E[L]U=u] = é g(z)fz(z)dz *-é g(u)fr,(z)dz (5.47)

With the conditional expectation the total expectation is
obtained by taking the expected value of conditional expec-

tation:



162
E[L] = E(E[LIU= u]] (5.48)
This would be obtained from:
E[L] = J E[L|U= u] fy(wau (5.49)

u

The first step, therefore, i1s to obtain the conditional

expectation of L.

5.4.2.1 Conditional expectation of L

To obtain the conditional expectation of L the distri-~
bution of Z has to be specified. It has already been

obtained as Equation (2.38):

aexp (-az) 5 0 <z < ex

fz(z) = (2.38)
(a+ B/c)exp(Bxc)exp[-01+ B/e)z] 3oz > ex,

The distribution is split into two ranges according to

the value of eX, . This will also split the conditional
expectation 1nto two ranges. Because the value of U is
fixed at u for the first expectation, the expressions
obtained will depend on whether u is greater or less than
¢x,. To simplify the expressions the distribution for Z in

c
Equation (5.49) is denoted as follows:
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£i(2) ;3 0 <z <ex
r,(z) = (5.50)

fa(z) 5 zZ > ex,

Defining the first case as u < CX,s and using Equation
(5.45) the conditional expectation is given by:
u e
ELL [U=ul= /S glz)f (z)dz +/ g(u)f,(z)az
o u
(5.51)

+ 7 g(wf,(z)dz

CXC

Because g(u) is not in terms of z the previous equation

simplifies to:
u
ELL|U= ul =/ g(2)f (z)dz + g(u) P,[2 > u] (5.52)
o
Where P, [Z > ul is the complement of the cumulative distri-
bution of fl(Z) in Equation (5.50), and 1s given by Equation
(2.36). Evaluation of Equation (5.52) with the appropriate
expressions yields:

KP
E[L|U=ul=  —% {l-expl-(o* K)ul} ; u < ex, (5.53)

The other case corresponds to u > CXy» and the condi-

tional expectation is obtained from:
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cxX
o0

c u
E[L |U=ul=/ g(z)f,dz +/ g(z)f,(z)az +/glu)f,(z)dz  (5.54)
o cx u
c
Substltution of the appropriate expressions, and

integration yields:

KP KP
E[L|U=ul= —©° o exp[-(o+ K)ex,]
(a+K) (¢+K) B+ (a+K)e
(5.55)
- —— 9  exp[-(B/c + a+ K)u + Bxc] ;u > ex,
(Blc + a+ K

To simplify the notation the following definitions are

introduced:

= o .
I'l - a+ K 3 (5056)

KP B
ry s———=— expl-@+ k) cx 1 5 (5.57)
(a+K)LB+(a+K)c]

KP
3 T eFRT K (5.58)

The conditional expectation 1is now given by:

ry - ry expl-(a+ k) ul 3w < ex,
E[L|U=u]l= (5.59)

rr-rz-r3exp[—(s/c + o+ K)u + Bxc] 3w > oex,

Now proceeds the determination of the total expecta-

tion.
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5.4.2.2 The expectation of the total load

To obtain the total expectation the distribution of U
must be obtained. Because U = pT the distribution 1is
‘readily obtained from that of T in terms of the linear
transformation of the distribution function (see Benjamin
and Cornell, 1971). The procedure yields, in terms of the

distribution for T as given in Equation (2.65):

0 for u < ps
fylu) = ééyexp[—-%(u/p - so)] for ps, < u < bp (5.60)

expl- %(b-so)] for u= bp

The distribution of U is split among three ranges of
parameter values, while the conditional expectation of the
previous sectlon 1s split into two. Because of this, diffe-
rent expressions will be obtained for the total expectation
according to how the different ranges interact. Three cases

arise out of the following situations:

Case I: (psO and pb) < ecx,
Case II: (psO and pb) > cx,
Case III: ps, < CX, > pb

Each case 1s considered in turn.
Case I

For this case the domain of U lies below the value ex
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and only the corresponding expression in Equation (5.59) is
utilized. The total expectation would be obtained from
Equation (5.49), which yields:

pb

E[L] =/ E[L|U= u(< ex )1f.(u)du (5.61)
- c U
ps
o]
Integration of the equations with the distribution of

Equation (5.60) and the expression for uicxc in Equation
(5.59) yields:

E[(L] = r, - q, exp[-(a+ K)pb-~1(b-s )]
1 1 a o

cx
- qap expl-(a+ K)ps ] , b<—pc (5.62)
where
rl(a-l- K)
a; = B FaFK (5.63)
el (5.64)

q'2= Y+ia+ Kiap

The term r; is defined in Equation (5.56).

Because S, < b only the condition pb SAcxc controls for

thls case.

Case II

For this case only the expression corresponding to u »
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¢x, from Equation (5.59) is used in Equation (5.49) to
obtain:

pb

E[L] =/ E[LIU= u(2 ex,)] fy(u)du (5.65)

psy

Substitution and integration yilelds:

E[L]= ry - rp - 43 exp [-B/c +a + K) ps, *+ Bxc]
(5.66)

- qy expl-(®/c +2+ K) pb +8 Xy g(b-so)]

where

_ T3Y (5.67)
Q3 = y + (g/c +d+ K) ap

ro(B/c +a+ K) (5.68)
B/c #a+ K + Y/ap

il

9y

The terms ri, r,, and ry are given in Equations (5.56),
(5.57), and (5.58), respectively.
Because b > S, only the condition ps > c¢x_, controls

c
for this case.

Case III

Here both expressions in Equation (5.59) are utilized

in Equation (5.49) to obtain:
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cx, pb
E[Ll= E[L 1U=u(5cxc)]fu(u)du+ / E{LiU=u(>ch)]fU(u)du (5.69)
pSo CXC

Integration with the appropriate expressions yields:

E[L]= ry - q, expl-(a+ K)pso] -, expl- %(cxc/p—so)]
+ (q, - q3)exp[—(m+ K) cxc-g(cxc/p-so)] (5.70)

- - - Y(p- :
qy expl-(8/c + a+ K)pb 2(Pmsy) +8x. 1 5 s < ex, <b

where:

r,{(g/c + o+ K) (5.71)
g7’c +o + K + y/ap

9

The other terms have been defined previously. With the
expreésions for total expectation the mean value of the
pollutant load that 1is retained by a detention unit during a
runoff event has been obtained. Three expressions come
about, each related to how the storage capacity parameters
relate to a parameter in terms of the system hydraulic
capaclty, the system response time, and the net inflow rate
to the storage unit. The next step 1is to obtain expressions

for the pollutant trap efficiency.

5.4.2.3 Pollutant trap efficiency

The pollutant trap efficiency of the detention unit is
defined as the long-term ratio of the quantity of pollutant
captured by the unit and the long term pollutant load. This

has been defined in Equation (5.20) as the ratio of the mean
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value of pollutant load trapped by storage to the mean value
of the total load. It remains to obtain expressions for the
mean value of the total load.

The total load has been defined 1in ferms of the total
runoff volume and the stormsewer runoff volume in Equations

(5.21) and (5.22), respectively. The mean value of Equation
(5.22) 1s obtained from:

oo

E[Lt,z]=£ Lt,z fo(z)dz (5.72)

Substitution of Equation (5.22) and Equation (2.38),

and integration, yields:

E[L

b2 TR 00 poaoe el tKex T (5.73)

To obtain the expectation of Lt x it 1s useful to

3

recall that Z becomes Xl as ¢ +o» For a large c, then,

Equation (5.73) yields the expectation of Ly
KP
—C= (5.74)
t’x a + K *

The trap efficiency can have either of tWwo expressions:

b, = _BIL] , (5.75)
2,x E Lt X

or
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o = _BIL] , (5.76)
2,z EILt

» 2

Either of the above expressions can be used to define
the trap efficiency. Equation (5.75) would Pep;esent the
overall efficiency while Equation (5.76) would represent the
efficiency in terms of the stormsewer load, which is 1less
than or equal to the total load. The expressions are easily
incorporated into the equations already obtalned by repla-
cing E[L] in Equations (5.62), (5.66) and (5.70) by either
of the following expressions obtained from Equations (5.75)
and (5.76):

E[L_ ] (5.77)

or

My = ey, ElLg ] (5.78)

With the formulation of the trap efficiency expressions

the storage/treatment 1soquants can now be defined.

5.4.3 Storage/treatment isoquants

The storage/treatment isoquants for pollutant control
are obtained in a manner analogous to the isoquants obtained
in Chapter 1IV. Each isoquant 1s defined as the locus of
storage capacity and treatment rate combinations that will

produce a certain level of trap efficiency, in terms of the



170

o = _EBlL] , (5.76)
2,z E Lt

52

Either of the above expressions can be used to define

the trap efficiency. Equation (5.75) would rep?esent the

overall efficiency while Equation (5.76) would represent the

efficlency in terms of the stormsewer load, which 1s 1less

than or equal to the total load. The expressions are easily

incorporated into the equations already obtained by repla-

cing E[L] in Egquations (5.62), (5.66) and (5.70) by either

of the following expressions obtained from Equations (5.75)
and (5.76):

E[L,. 1] (5.77)

t,x
or

E(L, ] (5.78)

Z pLz t,z

With the formulation of the trap efficlency expressions

the storage/treatment isoquants can now be defined.

5.4.3 Storage/treatment isoquants

The storage/treatment isoquants for pollutant control
are obtained in a manner analogous to the isoquants obtained
in Chapter 1IV. Each 1isoquant 1s defined as the locus of
storage capaclty and treatment rate combinations that will

produce a certain level of trap efficlency, in terms of the
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the specified parameter set.

Isogquant for case II

For this case Equation (5.66) 1s used. The procedure

ylelds:

. Ye1-
qy exp{-[(g/c +a + K) p + ;(1 §)1 b +px,}

* ag expl-(B/c + o+ K) pép +8 xc] (5.80)
+r,+M -r, =0 3y b > cx
2 bl
Z 1 §?§

Here, as well as for the next case the solution is

obtained in a manner similar to that of case I.

Isoquant for case III

The procedure for this case ylelds:

a, exp[-(o+ K) pSb] + r, exp [—-I(cxc/p - 8b)]
a

+ (Q3'q2) expl-(a+ K) cx -%(cxc/p -48b)] (5.81)

c
+ qy expl-(8/c + a+ K) pb —%(1- 9b +Bx ]

+M,-r, =0 s ex <b 5_950

P bg

A similar set of equations caﬁ be obtained in terms of
Mx’ 1f desired.

To solve the system each of the equations 1is solved in
turn and the one that satisfies the given range of accept-

able values of the storage capacity 1s chosen as the solu-
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tlon for the given set of parameter values. The expressions
that have been obtained for the isoquant and the ones to
follow, can be simplified if it is assumed that the rate at
which the detention unit fills up during an event 1is high
compared to the values of the treatment rate. In this case
the treatment rate will not make available an appreciable
amount of storage space during an event as the unit will
f1ll rather rapidly. Only the storage available at the
start of the event is employed to determine the amount of
pollutant trapped by storage. This is achieved in all
former equations by taking the value of the parameter p as
unity, implying, in effect, that the rate at which the unit
fills is much greater than the treatment rate.

The parameter p is a factor that determines the
amount by which the storage capacity is increased due to the
fact that the accumulated runoff is depleted at the treat-
ment rate. The value of this parameter has been estimated
by considering mean runoff rates. The methodology is suffi-
clently generalized so that other procedures can conceivably
be devised to estimate the value of p. Applications are

discussed in Chapter VII.

5.4.4 Estimation for the extreme conditlons

The extreme conditions considered are the situations
wherein the reservoir is either previously full or empty.

these are of Interest because the isoquants corresponding to
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these extremes form the bounds within which the solution
must lie. The situations are such that an analytical solu-

tion can be obtained.

Condition of previously empty reservoir

For this condition 84 < b, and all storage is avail-
able. This 1s given by 6= 1 in the previous equations.
Using 6= 1 in Equations (5.79) and (5.80) allows the solu-

tion of the equations for the storage capacity:

-1 94+ 9 x

b= aFop 1n<r1 - M, ; b<=5e (5.82)
= 1 a3 *+ 94 cx.

b= fc +o + K [1n<r1-r2—Mz tox| s b_{—pc (5.83)

Equation (5.80) is not utilized because its range at

§= 1 becomes just b = cxc/p.

Condition of previously full reservoir

This condition corresponds to 8, = 0, which is obtalned
by setting ¢ = 0 in the 1isoquant equations. Now Equation
{(5.80) is not used because it would imply b > » (or some
large number), which is meaningless. Equations (5.79) and

(5.81) are solved to yield:

al =
b=21n{— ;b
Y “<r1 =4, -1@) < 3C (5.84)
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b =(B7€7a-fKr_'apw tin {qy/[r;-M,-q; - r, exp(-yex_/ap)]

cX
(43-9p) expl-@+ K)ex -vex, /apl} +8 x} ;b 2 55 (5.85)
The solutions of this section are useful for defining
the 1soquants which bound the solution for any level of
efficlency. Thelr closed-form nature makes them easy to
use.

It remains to study a special case.

5.5 A special Case

The speclal case considered is the one that has been
described in previous chapters: the case of overland flow,
with available runoff statisties. For this case no time
correction 1is applied to the event duration (xc-*o ), and
all runoff 1is available to the storage unit (¢ >« ). The
product cx, approaches zero. Only Equation (5.80) 1is used
in this case as the others would imply non-positive stor-
ages. The values of the parameters in Equation (5.80) will
change as a result of the simplification. The equation now

has the form:

qy exp {-[(o+ K)p + %(l -8)] b} + as exp[-@+ K)p$ b]
+M o -r; =0 5 b >0 (5.86)

The parameter r,. as defined in Equation (5.87) is now
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zero. The other parameters have modified values, as given

below:

_ o H , (5.87)
3 T Y¥ {or Kap
. 5 , and (5.88)
I3 T 3% K
Kp (5.89)

- — O
% o+ K+ v/ap

The parameter r, remains the same as Equation (5.56).

The trap efficiency expression is now given by in

Dl,x’

Equation (5.75) because E[Lt 1 = E[L ] for this case.
» 2 t,x

Similar to the last section, expressions are obtained

for the extreme conditions of previously empty or full stor-

age conditions. If the detention unit is previously empty,

§= 1 in Equation (5.86), indicating full available storage.

Solving Equation (5.86) for b yields:

1 -+ q (5.90)
b= (arryp  'ln <7§ = M“‘)

If the unit is previously full, §= 0 indicating no available

storage. Equation (5.80) is solved to yield:

= a . _ay N (5.91)
b_Y+(cx+K)ap ln(rl-q3-MX>

This completes the development of the water quality
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formulation for detention unit design. Applications of the

methodology are presented in Chapter VII.
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CHAPTER VI

Detention Storage Optimization

6.1 Introduction

The optimization problem that arises out of the deten-
tlon storage formulation seeks to determine the most cost
efficient storage location, its capacity, and treatment
options. The situa£ion 1s diverse enough so that several
approaches are possible. Within the context of the present
work 1t 1s desired to obtain the most efficient storage
capacity and treatment rate, in terms of costs, for a single
storage unit. This 1s to be accomplished in terms of the
long-term operational characteristics of the storage unit.

Of the available optimization techniques dynamic
programming 1s probably the most widely utilized for deten-
tion storage location, due to the fact that hydraulic sewer
network analysis 1s adaptable to the recursive formulation
of dynamic programming algorithms. Representative of dyna-
mic programming approaches to optimal sizing and location of
detention units 1s the work of Mays and Bedient (1983),
Ormsbee (1984), Labadie et al. (1980), Robinson and Labadie
(1981), and Bennet and Mays (1985). A good review of avail-
able techniques 1s presented by Ormsbee (1984).

The interest of the present work is to obtain optimal
values for the storage capacity and treatment rate for

efficient system operation. This optimization 1s performed
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in terms of the long-term system operation characteristics.
This adds a new dimension to the study of stormwater
detention systems that is not accesible to single event
formulations. Simulation models have been employed to study
long-term system behaviour by carrying out numerous simula-
tions with long hydrologic records. A statistical analysis
of the results defines long-term behaviour of the detention
unit in terms of the storage/treatment isoquant for speci-
fied levels of efficiency. The nature of the results is
such that the theory of production function analysis can be
applied to the problem.

The formulation of the stormwater detention system
operation in terms of a production process has been most
noticeably utilized by Heany et al. (1977, 1979), and Nix
(1982). Production function optimization is carried out by
defining the physical production process in terms of deten-
tion basin parameters. The optimal values of detention
storage parameters stand for the optimal combination of
physical resource inputs. The production function 1is
obtained by simulation.

The statistical model formulated here will use the
production function approach to set up the optimization
problem. One advantage of the present statistical model 1is
that the production functions are obtained analitically,
thus greatly simplifying the solution of the problemn. An

exposition of the general aspects of production function
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theory follows, with the formulation of the optimization

problem that is to be solved.

6.2 Production Function Theory

A production function is a basie representation for the
transformation of resources to products (de Neufville and
Stafford, 1971). It also respresents the maximum output
attainable through a production process by any set of inputs
(Ferguson, 1975; Baumol, 1977). Given a set of resources

(XI’XZ""’Xn) the production function is expressed by

zp = g(xl,xz,...,xn) (6.1)

The output Zp represents units of production, which
need not represent monetary values. The Xn represent
physical resources input to the production process.

The production function, representing at each point the
maximum product obtainable for any given set of resources,
is the 1locus of all technically efficient combination of
resources. The production function does not have any
particular form, but always represents the 1limit on what can
be achleved with the resources and technology available.

A probable production function for a one input, one
output process is illustrated in Figure 6.1. Point A, while
feasible, does not attain the maximum allowable production,

1 1
which 1s obtained at Zp. Production 1level Zp can also be
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Figure 6.1 One-Input, One-Output Production Function
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1
obtained at point B through resource use level X , but this
would be an inefficient use of the resource since the same
output can be obtained through a lower resource allocation

1
at X .

6.2.1 Production Function Characteristics:Diminish-
ing marginal returns

The nature of the production function can be described

in terms of the change in the output produced by changes in

the level of resource use. This is known as the marginal
product. The marginal product MPJ with respect to each
input Xj is given by:

wp, = % (6.2)

The marginal product can also be expressed in terms of

finite differences as:

MP; = Zp ' (6.3)

The marginal product represents the contribution of an

additional unit of resource x, to the total product while

J
the other inputs are held constant.

It has been observed that for the efficient range of
system operation the marginal product of any resource will

eventually diminish with an increased level of resource
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utilization. This is known as the law of diminishing
returns (de Neufville and Stafford, 1971; Baumol, 1977).
The importance of this law is that it guarantees a convex
production region that facilitates the choilce of an optimal

production level.

Returns to scale

The change in the output occasioned by a proportional
change in all inputs 1is known as a return to scale. It is

expressed as:

A Zp (Return to scale)= g[(l+A)Xl,...(l +A)xn]

-8 (Xp,e0,X) (6.4)

Returns to scale can be increasing, decreasing, or constant,
depending on the relative change of outputs as related to
change in inputs.

De Neufville and Stafford (1971) report that economies
of scale have been observed for engineering systems. In

engineering the economies of scale are represented by:
Cost = (constant) x (capacity)® ; a< 1 (6.5)

The equation shows that average costs will decrease with

scale, and thus an increasing return to scale is obtained.
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given production process. The boundary of this surface
represents the most production that can be obtained from any
feasible combination of resources. If a certain level of
production is fixed at Z', the locus of all efficient combi-
nations of resources for this fixed level is called the
1soquant. It 1s shown in two-dimensional space in Figure
6.2(v).

From the point of view of the output there 1is total
indifference as to which point along the isoquant is chosen
to represent the level of resource use. Which combination
of resources 1s used to obtain a point on the isoquant can
be a function of relative resource cost, decision maker
preference, or other factors, such as availability of the
resource. These other criteria define the optimal combina-
tion of resources and thus the optimal point along the
isoquant.

A quantity that is related to the optimal point is the
marginal rate of substitution. It 1s defined for the two
input case as the amount by which one input must be
increased and the other decreased to preserve the same
output. The marginal rate of substitution (MRS) can be
shown to be equivalent to the negative reciprocal of the
marginal products (de Neufville and Stafford, 1971). The
marginal rate of substitution of input 1 for input j is

glven by:
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IEH
MRS = - = 6.
13 B (6.7)
The marginal product, as defined in Equation (6.2), shows

that the previous equation can be expressed as:
MRS, ., = - — (6.8)

For the two-input production process discussed here the
marginal rate of substitution would be expressed as:
MRS,, = —z;zl- (6.9)

It is seen that, at any point, the marginal rate of substi-
tution 1s equivalent to the negative slope of the isoquant.
Isoquants convex to the origin exhibit the principle of
diminishing marginal rate of substitution (James and Lee,
1971). Considering, as an illustration, channel improvement
and reservoir storage, James and Lee indicate that as more
channel improvement and less storage capacity are provided
to produce a given level of flood control, the larger 1is the
incremental channel improvement required to effeet a unit

reduction in flood storage.

6.3 Optimization

The resource allocation problem considered here can be

solved by marginal analysis as long as the associated func-
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tions define convex regions (de Neufville and Stafford,
1971). James and Lee (1971) have illustrated the applica-
tion of marginal analysis to multiple-purpose reservoir
projects, as well as the application of other optimization
techniques within the water resources planning environment.
The applicatlion of the method 1is considered in two stages
due to the difficulty associated with the estimation of the
benefits, which, in many situations cannot be expressed in
monetary terms. For example, the benefits of pollution
abatement facilities.

In the first stage a particular level of production 1is
optimized 1in terms of resource cost only. The locus of all
optimal points for all levels of production defines what is
known as the expansion path or cost effectiveness function.
For each production level the expansion path intercept
represents the most economical use of the resources to
achieve that 1level. The level of optimization pursued in
the present work corresponds to this first stage.

The second stage selects the best level of production.
This 1s done in terms of the benefits assoclated with the
production process. In many situations value judgements are
involved to prescribe process benefits or to assess the
nature of the benefit/cost interaction. Because of this
difficulty, and because different approaches to these pro-
blems are possible, the main emphasis of the present work is

on obtaining the expansion path for the first stage
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analysis.

The optimality criterion for the first stage analysis
is that, at the optimum point, the ratios of the marginal
resource cost and marginal product be equal. This 1is

expressed as:
MP, _ MP. (6.10)
Mcl = mcY
1 dJ

Considering that the ratio of marginal products is defined
as the slope of the isoquant the previous equation can be

expressed as:

@
>

=
[}

(6.11)

| o N

i =
J

@
=
<

X

The slope of the isoguant at optimality is equal to the
ratlo of marginal costs. If the resource costs are cons-

tant, then:

C. (6.12)

axj Ci

H
I
2!

The optimum is then defined in terms of the ratio of unit
resource costs. At optimality, then, the 1isoquant 1is
tangent to the line of constant cost. This holds true for

non-linear cost functions as well.
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6.3.1 Formulation of the optimization problem

If the stormwater storage/release system is viewed as a
production process the results of production function theory
can be applied to obtain optimal estimates of the storage
capacity and the treatment rate. The storage capacity and
treatment rate can be thought of as representing the inputs
to the production process. The performance 1level, or the
output, is the trap efficiency of the storage unit. This
approach has been employed by Heany et al. (1977), Heany
(1979), and Nix (1982). Their efforts were aimed at obtain-
ing the expansion path in terms of the trap efficiency of
the storage unit. The second stage optimization is not
addressed, for the reasons that have already been mentioned,
and are further expanded upon for the particular case of
storage/release systems by Nix (1982). This is not altoge-
ther negative because a particular optimization criterion is
not favored, and flexibility is maintained. It, for exam-
ple, would allow for a regulatory agency to set the desired
production level, or system performance requirement, and
thus the optimal value could be chosen from a point along
the expansion path.

The optimization problem, where cost is to be minimized

for a specified performance level is given as follows:

Minimize C = g (a,b) (6.13)
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such that €= f (a,b) (6.14)
E_>_€O
a,b >0
Where: C = total cost, dollars,
a = treatment, or release, rate, in/hr,
b = storage capacity, in.,
13 = performance level or trap efficilency,
€y = specified performance level,
g(a,b) = cost function for a and b, and
f(a,b) = production function for a and b.

The above is a constrained minimization problem, in terms of
the objective cost function and the performance level
constraints. The production function corresponds to the
storage/treatment 1isoquant for a specified performance
level. In the past, the shape of the isoquant has been
obtained through simulation studies, and perforce the opti-
mlization has been undertaken graphically. The models STORM
and SWWM have both been used to obtain storage/treatment
isoquants through simulation. As indicated in the first
chapter, a frequency analysis of simulation results yields
the 1soquants. For a 1linear cost function the optimum is
defined by Equation (6.12). The graphical representation of

the solution is illustrated in Figure 6.3.
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Figure 6.3 Optimization in Production Space (Heany et al.,
1977)
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6.3.2 Cost functions

The costs associated with storage/treatment systems can
be classified in terms of capital and operation and main-
tenance costs. The major costs associated with stormwater
storage are related to land use and engineering costs. The
costs associated with treatment are related to the design,
construction, and maintenance of engineering facilities.
For the analysis these costs are expressed as annual costs.

Costs vary between locations, and so the estimation of
local costs 1s preferable to using generalized cost informa-
tion. Nevertheless regionalized cost information 1is useful
for the initial assessment of the planning stage. Procedu-
res exlst for estimating costs related to storage/treatment
devices (Benjes, 1976; Municipal Environmental Research
Laboratory, 1976). Heany et al. (1977) developed cost
functlions for wet-weather treatment devices from a survey of
many cities throughout the U.S.

The total input costs have been expressed as power
functions (Nix, 1932). Equation (6.13) would thus be
expressed as:

Cc = c%l + %2+ Cp (6.15)

Where: Cys Cp = coefficlents, Cys Cp >0 H

e %2

i

coefficients, s O >0 ;5 and
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Cp = total annual, fixed, storage and
freatment costs.

The shape of the cost function is determined by the value of
the exponents o and Oy e Evidence seems to suggest that the
exponents are less than or equal to unity (Heany et al.,
1979; Benjes et al., 1975), indicating economies of scale.
Representative parameters of the cost function are given in
Table 6.1 and Table 6.2. The Water Planning Division of EPA
(1983) has obtained an average pond construction cost esti-
mate given as C= T77.4 80'51, where S is the volume of

storage 1n cubic feet, and C is the cost in 1980 dollars.
If the cost function 1s simplified to a linear case the

equation would be given by:

C =Cja+Cyb+ Ch (6.16)

This would entail great simplification of the cost data, but
it also simplifies the optimization problem. To avoid
dealing with non-linear cost functions directly, Nix (1982)
transformed the production isoquant into production cost
space to obtain a graphical solution. Dealing with non-
linear cost functions 1is troublesome for graphical techni-
ques due to the difficulties that may arise with defining
points of tangency graphically. The statistical model

proposed here 1s more efficient in this respect.
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6.4 The statistical approach

The commonly - used techniques 1llustrated thus far for
defining storage/treatment isoquants are based on the use of
simulation models. As such, these are "form-free" in the
sense that they are not obtained explicitly from analytical
expressions but rather from a statistical assessment of
numerous simulatlion results. This necessitates the use of a
graphical approach to optimization, which, by nature 1s
limited to handling two resource inputs. Attempts have been
made to fit analytic functions to the isoquants to overcome
the graphical dependence of the procedures. Heany et al.
(1977) have suggested the following equation to represent

the 1soquants:

T = Tl + (T2 - Tl)expC-KS) (6.17)
Where T = wet-weather treatment rate, in/hr;
Tl = treatment rate at which 1isoquant Dbecomes
asymptotic to the ordinate, in/hr;
T2 = treatment rate at which isoquant 1intersects
the abscissa, in/hr;
S = storage volume, inches; and
K = constant, j.nches_l

In the previous equation the constant has to be obtained
with actual data or from simulation results.

Nix (1982) has used analytical production function
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models in order to test for the model that would best
approximate the simulation results.

While these have had some success in approximating the
results, they cannot be generalized. They lack the theore-
tical basis that would relate them to the nature of the
urban stormwater process.

The statistical model developed in the present work has
obtalined analytical expressions for the isoquants, based on
the underlying hydrological principles of the process. As
such 1t 1is a generalized model. The optimization is now
made easier because a graphical solution 1is not strictly
required. Also the isoquants do not have to be obtained by
extensive and costly simulations but can now be obtained in
terms of a few relevant parameters.

The optimization problem is expressed in the form of
Equation (6.13) and (6.14). The difference now is that the
constralint 1is analytical. It will be shown that the
isoquants are convex. The optimization by marginal analysis
1s now carried out by equating the slope of the isoquant to
the slope of the 1socost line. The.values of the storage
capacity and treatment rate which define the point of
tangency will be the optimal values. This is the solution
expressed in Equation (6.12).

The equations for the isoquants have been presented in
Chapter IV. Isoquants were defined for given levels of

capture efficlency, and these represent the constraints on
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the optimization problem. the application of these proce-
dures with the storage/treatment isoquants 1s to be

presented in Chapter VII.
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CHAPTER VII

Application of the Statistical Model

7.1 Introduction

The development of the stormwater storage statistical
model has thus far concentrated on the formulation and
development of the model - mainly with the mathematical
formulation of the storage/treatment 1isoquants. The present
chapter presents the applications of the model within the
stormwater management environment, and also insight into the
types of processes that are capable of being represented by
the statistical model. The statistical model has three
major components - the hydraulic model which describes the
long-term detention unit behaviour 1in terms of the fraction
of the hydraulic load which 1s retalned at the unit; the
pollutant load model which assesses system behaviour in
terms of the fraction of the available pollutant load that
is trapped by the system; and the optimization model which
determines the cost efficient combination of treatment rate
and storage capacity necessary for efficlent system opera-
tion.

The basic problem that is addressed in this research i1s
that of developing a procedure to estimate urban stormwater
detention requirements. An objective was to determine this
procedure 1in a manner that was mathematically efficient, and

that would account for the evident randomness of the related



201

hydrologic processes. The expressions obtained for the eva-
luation of storage capacities, namely the storage/treatment
isoquants, reflect the physical process of the temporal
storage dynamics at the detention unit and also the manner
in which these dynamics are temporally activated via the
stochastic arrival process.

To assess the efficiency of the model in predicting the
shape of the actual storage/treatment isoquant at a site it
1s necessary to obtain adequate long-term records in order
to estimate accurately the statistical parameters required
in the model. The type of information that 1s required is
related, mainly, to the operational characterlistics of the
detention unit and to the runoff process, which would
include pollutant transport information. Because of the
inherent randomness 1in the occurences of runoff events a
sizable record would be required to obtain reliable
parameter estimates.

Because long records are usually not avallable in the
form required by statistical approaches the results obtained
from statistical formulations are usually compared ¢to
simulation resul@s. Apart from their other uses simulation
models are useful from the point of view of statistical
models because they can be used to generate long records of
system Dbehaviour that 1lend themselves to statistical
analysis. It is to this type of analysis that statistical

results are compared. As has been mentioned 1in previous
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chapters the two most commonly used simulation models 1in
detention storage assessment are the model STORM and SWWM.
They have been used in storage analysis to obtain storage/
treatment 1soquants, both for hydraulic volume and pollutant
load control. They have the capability of simulating system
behaviour continuously over long periods of time. Simula-
fions with these models have been conducted with a year's
amount of hourly rainfall, although limitations in the
simulation period arise because of cost constraints. Sta-
tistical analysis of simulation results yields the kind of
information that statistical methods can compare with. The
statistical model obtained in the present work 1s compared
with simulation results. Good results will establish the
worth of the statistical formulation and willl provide a
powerful tool for prompt assessment of detention storage
behaviour.

Several possibilities exist regarding the application
of the statistical method. Each application 1s to be
described in turn. In a general sense the model 1s compared
to the statistical analysis of the results obtained with the
simulation models STORM and SWWM. The major objective is %o
obtain the storage/treatment isoquant from which efficient
combinations of storage capacity and treatment rate can be
obtained. The modeling results represent real-world model-
ing efforts from various locations of different hydrologic

characteristics. Comments on model behaviour and
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interpretation of results are presented in each section.

7.2 Applications to Overland Flow

Overland flow represents a particular case of the
general statlstical model. In overland flow all of the
runoff generated over the catchment may arrive at the
detention unit. For this case there exist no limits to a
stormsewer system, and thus no water 1s lost to the deten-
tion unit due to a limited inlet capacity in the face of a
high-rate runoff event. From the standpoint of the storage
unit, whithin the context of the storage model, it is as if
the stormsewer system had an infinite capacity in the sense
that all of the runoff arrives at the unit. This condition
is obtained for +the statistical model by assuming an
infinite runoff-trapping capacity for the urban catchment.
Thus, the parameter ¢, representing the system hydrauliec
trapping rate, 1is assumed to be infinitely large so as to
intercept the highest runoff rates obtainable. This is a
common assumption of standard simulation models, and 1is a
conservatlve assumption which may lead to overdesign, as
will be shown later on.

Another condition to be specified in this case is that
the runoff statistics are available, that is, the mean value
of the runoff volume, runoff event duration, and intervent
time are available from given records. This means that the

event duration transformation of Equation (2.6) 1is not
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needed because runoff records are available and there is no
need to transform rainfall durations into effective rainfall
(or runoff) durations. The two applications discussed in
this section are of this kind.

With the two conditions expressed here the statistical
model becomes the special case described in sections 3.4 and
4.6. The corresponding expressions of the special case are
used to obtain the storage/treatment isoquant. The expres-
sion for the isoquant 1s given by Equations (4.34) and
(4.39). Expressions for the extreme condition of storage
initially empty or full are given for the special case by
Equations (4.40) and (4.41), respectively. The initially
empty or full condition refers to the storage condition at
the end of the previous runoff event. This condition 1is
assumed known although in reality 1t is a random variable
whose value cannot be determined with certainty. The
sensitivity of the isoquant to this parameter 1s to be
consldered.

Applications of the case discussed here to 1idealized

catchments in Atlanta and Minneapolis are now illustrated.

7.2.1 Storage/treatment isoquants for Atlanta, Georgila

Goforth, Heany, and Huber (1983) have used the simula-
tion model SWWM to obtain storage/treatment isoquants for a
catchment in Atlanta. The 24.7 acre catchment is 37% imper-

vious. The catchment is represented in Figure 7.1. The
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Figure 7.1 Schematic of Case Study Catchment, Atlanta
(from Goforth et al., 1983)
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rainfall data used to generate runoff was obtained from the
National Weather Service for the city of Atlanta, and repre-
sented 24.6 years of hourly rainfall records. Because of
the high cost of carrying out the simulation, a run with the
full 25 years of record was not appropriate so only one year
was simulated. The year was chosen so that the related
rainfall statistics for that year were comparable to that of
the full record.

For the simulation the hourly values of the rainfall
record were transformed to runoff with a rainfall/runoff
transformation of the coefficient type discussed in Chapter
I. The runoff 1s routed to the detention unit where a
portion 1s stored, depending on available capacity. From
the detention unit water is pumped continuously at a fixed
rate. For a glven storage capacity and pumping rate the
fractlon of the runoff volume that is captured by the unit
for all events was obtained to represent the trap efficien-
cy- The locus of this efficiency is the storage/treatment
isoquant.

An analysis of the runoff parameters yielded the sta-
tisties of the runoff process which form the input to the
statistical model. These appear in Table T.1l. The para-
meters are the mean runoff volume, event duration, and
interevent time. Also shown 1n Table 7.1 are the coeffi-
cients of variation of the parameters. The coefficlent of

variation 1is defined as the ratio of the mean and the
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Table 7.1 Runoff Parameters for Atlanta Simulation

Parameter Description
Year of record 1953
Number of events 71
Mean runoff volume, E[le 0.223 in.; coeff. of

variation (c.v) = 1.102

Mean runoff duration,

E[X2J 6.887 hr.; c.v. = 1.121
Mean interevent time,
E[X3J 124.3 hr.; c.v. = 0.937

Adapted from Goforth et al. (1983).
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standard deviation of the variates. A value of unity
implies that the exponential distribution can be used to
describe the variable because the exponential distribution
has a coefficient of variation of unity. For the parameters
shown in the table the coefficients of variation are reason-
ably close to unity so that the use of exponential distribu-
tions for these parameters is justified. The procedure used
by Goforth was to obtain a minimum interevent time, in this
case elght hours, which would define independent runoff
events with a coefflent of variation approaching unity.

The nature of this simulation 1s such that the special
case of the statistical method is applicable. The most
expedlent use of the statistical method is that with the
extreme conditions - the condition of previously empty or
full storage, because of the explicit form of the solution.
Safety and operational considerations would suggest the
consideration of the most critical scenario - that of the
previously full storage unit. The previously empty condi-
tion defines the minimum storage capaclty needed to provide
a specified level of capture efficlency.

Using the equations of flow capture efficiency, the
results obtalned are compared to simulation results and are
shown as Figures 7.2 and 7.3. Figure 7.2 shows the simula-
tion results compared to the lower bound estimates corres-
ponding to the condition of previously empty storage, while

Figure 7.3 shows the comparison to upper bound estimates
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corresponding to the previously full storage condition. The
results obtained have been normalized by the mean runoff
volume, E[Xl], and a parameter Qo’ defined as the ratio of

the mean runoff volume and the mean interevent time:
Q, = ELX; J/E[X;] (7.1)

The simulation results shown in the figures exhibit
some noteworthy features. The 1soquants become asymptotic
to a certaln lower value of a/QO, in this case around unity.
At the point where the 1isoquant becomes parallel to the
ordinate the storage capacity 1s sufficient to provide the
corresponding trap efficiency. Increasing the storage
capacity further does not 1increase the capture efficiency
because the treatment rate does not increase. Increasing
the treatment rate reduces the storage capacity requirement,
and large release rates lead to small detention capacities.
Eventually the point is reached where practically no storage
will be required because of the high treatment rate. Theo-
retically, for a specified level of trap efficiency, or
control, the system is capable of operating at any point
along a given isoquant - 1in fact 1soquants can be thought
of as indifference curves in a production process. The
point at which the system will actually operate is obtained
from the optimization procedure, and is illustrated in a

subsequent section. Another 1important feature 1s that the
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isoquants are shown to be convex functions, thus fulfilling
a prerequlsite for the application of the production process
optimization procedure discussed in Chapter VI.

The results obtained with the statistical method in
Figures 7.2 and 7.3 indicate an excellent agreement with
simulation results. As expected the upper and lower bound
solutions straddle the simulation results for each control
level. For lower values of the capture efficiency the
statistical results show practically the same values of
storage capacity for previously empty and full storage
conditions. As a rule both solutions converge for large
values of pumping rate, as 1s seen from Equations (4.40) and
(4.41). This convergence occurs for lower values of a/QO at
lower control levels, but occurs at much higher values of
a/QO at the higher control levels. The greatest difference
between the two conditions is observed for the highest trap
efficliencies at the lower treatment rates. This 1s an
effect produced by the relative magnitude of the 1interevent
time. Because the interevent time is an order of magnitude
larger than the event duration the likelihood of having the
stored runoff volume substantially depleted upon the arrival
of the next event 1s high. For the lower trap efficiencies
the required detention volume, and the corresponding runoff
holding capacity, are relatively small. Thus a higher
likelihood exists of depleting this volume by the time the

next event arrives. This 1s reflected in the statistical
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model by having the solution for both extreme conditions
predict somewhat similar values of the required storage
capacity over a range of pumping rates. For these rates and
storage capacities 1t makes little difference 1if the
detention unit is previously full as the contents will be
substantially depleted by the time the next event arrives.
For low pumping rates the results will not converge because
the lower rates will leave more runoff in storage and deten-
tion storage requirements will increase.

For the higher trap efficiencies the storages predicted
by the equations are very different for both extreme condi-
tions, although, as stated earlier, they will converge for
the higher pumping rates. For the higher trap efficiencies
higher storage capacities are required. These can store
higher runoff volumes which are not as likely to be depleted
by the time the next event arrives. There 1s a higher
probability of having some runoff volume left over, and thus
of having the detention unit partly full over the long run.
The results suggest that for higher trap efficiencies an
Intermedlate storage level assumptlon would give better
estimates than the extreme conditions. These conditions can
be studied with the statistical model.

An example of the application of the equations for this

case 1s presented next.
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Example 7-1: lower and upper bound estimation.

It is desired to obtain the upper and lower bound
storage 1levels for the Atlanta catchment, for a treatment
rate of 0.02 in/hr, and a runoff trap efflciency of 90%.
Using the parameters for Atlanta, the statistical parameters
are given byo = 4.48 1n”1, B= 0.145 hr'l, and Y= 0.008 hr 1.
The upper bound storage requirement, corresponding to the
condition of previously full storage, is obtained from

Equation (4.41):

b= 0.02 . 1n 4.48(0.02)(0.145)
0.09%8 (0.235)(0.098)(0.1) - 0.145(0.008)
ylelding:

b= 0.50 in.

The lower bound storage requirement, corresponding to the

case of previously emtpy storage 1s obtained from Equation

(4.40):

o (0.145)
b= 45 'In [[u.MB(0.02)+0.145](0.10)}
b = 0,41 in.

The upper bound storage represents the critical scena-

rio, and represents the conservative storage estimation.
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To study the effect on the isoquant of having inter-
mediate storage levels use 1s made of Equations (4.34) and
(4.39). The parameter$ in Equation (4.39) 1s set to
represent the fraction of the storage volume that 1s avall-
able for storage at the end of the previous event. The
equations are then solved for the 1soquant in terms of this
parameter. No explicit solution in terms of the storage
capacity can be obtained for intermediate storage considera-
tions, but an available numerical procedure, Vsuch as the
Second Order Newton-Raphson method can be utilized to solve
the equation for the storage capacity (James et al., 1985).
The latter was utilized for this situation. The results
obtained are shown 1in Figure 7.4 for the case of the 90%
trap efficiency. The effects of the non-linearity in the
process are evident as the higher percentages of available
storage will tend to bunch up near the lower limit curve of
the previously empty storage condition. The results seem to
show that for higher trap efficiencies the previously empty
assumption of the detention storage condltion is not justi-
fied. It appears that, on the average, for the higher trap
efficiencies, implying greater required storage capacity, a
substantial amount of runoff may be initially available in
the storage unit, at least for the lower treatment rates.
The 1implication 1s that wutilization of the 1isoquant
equations for high trap efficiencies should assume that the

avallable storage capacity upon the arrival of a runoff
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event is somewhat less than half the design storage
capacity, given that the equations are used in the manner
discussed in this section. For the case of the lower trap
efficiencies the isoquants for both extreme cases are very
close to each other and a distinction between levels of
available storage 1s not warranted for practical reasons,

except perhaps for large catchments.

Example 7-2: storage estimation for the intermedilate

case.

Utilizing the same parameters as in Example 7-1 it is
desired to obtain storage requirements for the case wherein
the storage level at the end of the previous event is at an
Intermediate value. Because this situation corresponds to
the special case, Equation (4.39) is utilized.

It 1s assumed for this case that 25% of the storage
capacity is available at the end of the previous event, thus
8= 0.25,

The isoquant is obtained by substituting the parameter
values in Equation (4.34). PFor a removal rate of 0.02 in/hr

it is obtained:

0.1 - 0.573 exp (-4.78b) - 0.051 exp (-1.12b) = 0

from which it is obtained:
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b = 0.44 1n.

This value of storage 1s intermediate between the two

extremes obtained in Example 7-1.

7.2.2 Application to Minneapolis, Minn.

An application similar to that of the previous section
is undertaken for the city of Minneapolis. The simulation
of the detention unit behaviour was undertaken by Nix (1982)
with the model SWWM. The nature of the catchment and the
storage scheme are illustrated in Figure 7.5. The bypass is
used to route excess runoff to the receiving water. Once
the unit 1s filled runoff is bypassed and no further flows
enter the basin during the duration of the event. Similar
to the Atlanta simulation the system was studied with a year
of representative rainfall records. It was also assumed
that all runoff was available to the detention unit as,
basically, overland flow. A statistical analysis of the
runoff record generated with the SWWM rainfall/runoff trans-
formation yielded the parameters shown in Table 7.2. The
coefficient of variation of the parameters on the table are
close to unity for the runoff duration and interevent time,
but only approximately so for the runoff volume. Neverthe-
less 1t seems reasonable to assume that the exponential
distribution holds for the process although the runoff

process variatlion may indicate some other distribution.
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Table 7.2 Runoff Parameters for Minneapolis

Parameter Description
Year of Record 1971
Number of Events 93
Mean runoff volume, E[Xl] 0.088 in., coeff. of

variation (c.v.) = 1.40

Mean runoff duration,
E[X,] 7.3 hr., c.v. = 1.10

Mean interevent time,
E[X3] 94 nr., c.v. = 0.96

Adapted from Nix (1982)



220

PRECIPITATION

PEVLLLELEEEEL T

RESIDENTIAL
WATHERSHED

640 acres

BYPASS

RELEASE

—— RECEIVING WATER —— — —

Figure 7.5 Configuration of the Stormmater Control System
for the Minneapolis Catctment (from Nix, 1982)



221

Using the parameters of Table 7.2 the special case of
the statistical method is utilized to generate storage/
treatment isoquants, as in the previous section. For the
two extreme conditions - those of previously empty or full
available storage - Figures 7.6 and 7.7 show the results
obtained. The overall pattern is the same as in the pre-
vious section and the same type of general comment would
apply, although here some further observations are called
for. Results here have not been normalized as they did not
appear in this form in published results.

It is noted in Figure 7.7, the case corresponding to
the previously full detention unit, that some of the simu-
lation isoquants are high enough to intercept the statis-
tlcal isoquants, apparently in contradiction to the fact
that the extreme conditions should straddle the simulation
results. This may be due, in part, to the possibility that
the underlying distributions are not strictly exponential.
Another possibility is the fact that the simulation was
conducted with only one year of data, and this may not be
adéquate, statistically speaking, to define accurate para-
meter estimates and long-term storage/treatment isoquants -
thls is a condition which would affect all the simulations
presented in the present work. Most likely the situation is
heavily influenced by the fact that the detention unit is
operated, in the simulation, in the bypass mode. As

Indicated earlier, in this mode runoff 1is accepted by the
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detention unit up to the time it fills up. Afterwards no
more inflow is accepted and the remaining runoff 1is bypass-
ed. The storage equation that serves as the basis for the
statistical model assumes that runoff will continue to enter
the basin throughout the duration of the event - even after
the unit is full. An additional runoff volume, given as the
volume that 1s pumped from storage at the treatment rate
from the time at which the reservoir 1s full until the
cessation of runoff, can go into storage in the statistical
model. For thils reason the statistical model is capable of
accepting a greater amount of runoff volume from an event
than 1t would if 1t were to operate in the bypass mode as
defined for the simulation study. The long-term implication
is that, for a specified control level, the statistical
model would require less storage capacity than that obtained
from the simulation model for the same control level. Con-
versely, the simulation model operated on this particular
mode would require more storage capacity for the given level
of control because 1t retains less runoff from an event and
thus needs more capacity to achieve the same level of effi-
ciency as a system that accepts runoff continuously over the
event duration. 1In the long run this yields the result that
the 1soquant obtained from the simulation model would be
higher, requiring larger storage capacities, than would be
the 1isoquants obtained from systems accepting runoff

cont inuously. It 1s apparently for this reason that the
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simulation isoquant appears high with respect to the upper
bound solution of the statistical model, although the
influence from the first two observations may also be
present.

It is, of course, expected that some discrepancy exists
between the approaches. After all, the simulation model is
a detailed approach that accounts for event variability at
very short time intervals, while the statistical approach
deals with long-term effects involving the major process
parameters 1in a lumped fashion. Because of this it 1is all
the more remarkable that the results have shown such good
agreement and consistency.

The sensitivity of the isoquant to variations in the
storage level at the end of the previous runoff event has
already been analysed for the case of the previous section.
The same general observations would hold true here and the
analysis will not be duplicated. For the particular case of
the bypass mode considered in the present section the
results show that the condition of previously full available
storage may be recommended as the condition to assume for
isoquant estimation.

Good results have been obtained which establish the
usefulness and overall validity of the statistical approach
as compared to simulation results for the case of the
hydraulic 1load. Isoquants for pollutant load control are

discussed 1n the following section.
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7.2.3 Isoquants for pollutant control

Two types of pollutant control assessment procedures
are possible with the statistical model. In the first of
these an uniform pollutant concentration is presumed to
exlst throughout the duration of the discharge. For this
case the storage/treatment isoquant 1s exactly equivalent to
the hydraulic storage/treatment isoquant because the cons-
tant concentration terms will cancel out upon taking the
ratios of expectations of pollutant load, yielding the
ratios of the hydraulic load defined in Chapter 1IV. The
second formulation employs the first-order pollutant washoff
model which has been characterized as defining "first flush"
loading conditions. As indicated 1n the review of Chapter
V, other formulations have been employed, mostly based on
regressions, but the first-order model is deemed adequate
for the present purposes. Indeed, its applicability to
situations 1s more or less established, although 1t 1is
somewhat difficult to fit the first-order decay parameter of
the formulation to actual data (Jewell, 1983).

The statistical model, as formulated in Chapter V is
now applied to several locations and compared to simulation

results.

Pollutant control isoquant for Minneapolis

The results obtained in Chapter V are applied to a

catchment 1n the city of Minneapolis - the same catchment as
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that of the last section. The equations that are applicable
to this situation correspond to those of the special case,
and are glven, for the general case by Equation (5.86), and
for the extreme conditions of previously empty or full
storage by Equatlons (5.90) and (5.91), respectively. The
results are shown in Figure 7.8 for the pollutant trap
efficlencies of 50%, 70%, and 90%. A full range of previous
available storage conditions is 1included for the 90% iso-
quant - the extreme conditions and intermediate values.
Only three isoquants have been constructed because they
illustrate the general behaviour of the model. At each
specifled treatment rate the conditional expectation of the
runoff intensity is obtained in order to determine the rate
at which the storage unit is being fllled by the incoming
runoff. The expression to be evaluated by the model is
gilven in Equation (5.42), the intensity term being defined
by Equation (5.40). Table 7.3 shows the values of the mean
runoff intensity that are obtained from Equation (5.40).

The same type of comment that was made for the hydrau-
lic 1soquant applies here in a general sense. There 1s much
greater sensitivity to the fraction of the available storage
capacity that 1is assumed available at the end of the pre-
vious event for the higher trap efficiencies, as was the
case for the hydraulic load. For the higher trap efficien-
cles the simulation results indicate that the system is in

an Intermediate storage condition, on the average, at the
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Table 7.3 Conditional Mean Runoff Intensity for

Minneapolis
Treatment Rate (in/hr) I(a) (in/hr)
0.001 0.109
0.002 0.117
0.003 0.125
0.004 0.133
0.005 0.141
0.006 0.149
0.007 0.157
0.008 0.165
0.009 0.172

0.010 0.180
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end of each event on the order of less than 50% available
storage. For the lower trap efficiencles the storage
condition at the end of the previous event does not affect
the results appreciably over a range of treatment rates but
it does make a difference for low treatment rates, depending

on the particular trap efficliency level chosen.

Example T7-3: Storage requirement for pollutant control.

It 1is desired to obtain the storage capacity required
to control 70% of the Total Suspended Solids (TSS) load
obtained from the Minneapolis catchment. Runoff is removed
from the unit at the rate of 0.006 in/hr. The special case
condition is in effect.

The statistical runoff parameters are given by

1 1 1

a=11.36 h™ ", B= 0.137 hr ~, and y= 0.0l1 hr ~. The condi-

tional mean runoff intensity is obtained from Table 7.3 as
I(a) = 0.149 in/hr. It is used to obtain the parameter p in
Equation (5.43) as p = 1.04. The first order washoff

4.6 in"t.

parameter is given as K

The isoquant for this case 1s defined by Equation
(5.86), with the extreme cases given by Equations (5.90) and
(5.91). The values of the coefficients are obtained by
direct substitution of the known parameters in the appro-
priate expressions. The following values are obtalned for

the coefficlents:



231

ry = 0.288 P_ 1b

r'3 =I"1

a3 = 0.029 P_ 1b

qy = 0.260 B_ 1b

M_ = 0.202 P_ 1b
X o

The value of PO drops out of the isoquant, so 1ts value need

not be specified.
If it 1s assumed that the storage unit 1is previously

empty Equation (5.90) is used to obtain:

b = 0.0602 1n (3.345)

or :

o
H

= 0.072 in.

If the critical condition of previously full storage is

employed, Equation (5.91) is used to obtain:

o
[}

0.0542 1n (4.53)

or :

o
1]

0.082 in.

If an intermediate previous storage condition is specified,
say 6= 50%, meaning a half-full unit at the end of the pre-
vious event, the storage capacity 1s obtained from Equation

(5.86):
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0.260 exp (-17.5b) + 0.029 exp (-8.3b) - 0.086 = 0

from which it 1s obtained:

b = 0.075 1in.

If the latter 1is the design value to be specified, this
would imply a storage capacity of 4 acre-ft.

The isoquants obtained for the statistical method show
a somewhat flat response over a range of treatment rates of
the figure. The equations produce a decreasing curve with
increasing treatment rate for all cases but the rate of
decrease 1s slower than that obtained with the simulation
for this particular case. The possible explanation of this
effect has to do with the manner in which the simulation
study 1s set up, and points to a pitfall that arises in
using simulation studies with short records to predict
long-term system behaviour. The simulation study has used a
year's lenght of rainfall records to determine, by relative
frequency analysis, the shape of the isoquant. This record
is representative, in terms of the statistics, of the total
available record. The problem with this approach is that
the event occurrences are fixed for all simulation runs.
The effect of increased treatment rates on relative storage
requirements is obtained relative to a fixed realization of

the hydrologic process, with 1increasing treatment rates
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being measured against fixed runoff rates. Thus, a relati-
vely rapid decrease in storage requirement could occur with
this approach as the treatment rate i1s increased with
respect to prescribed runoff rates. In an actual situation
the system would be operating against the full sample space
of hydrologic event possibilities, which may include events
of an extreme nature, or simply events, which exceed the
intensity of the events within the particulart data set
employed in the simulation. The statistical load model, in
taking account of these possibilities via the statistical
distribution of the associated hydrologic variables,
exhibits a slower decrease in storage requirement with in-
creasing treatment rates. This is interpreted as reflecting
the fact that increased treatment rates do not reduce the
likelihood of obtaining high intensity runoff rates (yield-
ing a large load over a short duration) to the extent
implied by the simulation results. In this respect the
statistical results appear more realistic.

Comparing the isoquants produced by the first order
pollutant load model and the isoquants produced by the
hydraulic model (which can be interpreted as the uniform
concentration model) it is seen that the pollutant load
model produces isoquants that require, over a range of
treatment rates, less storage capacity than the isoquants of
the hydraulic model. The first-flush condition described by

the first-order load model will produce a greater pollutant
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load with the same runoff volume as would the uniform
concentration model. For a given trap efficlency the first-
order model would require less runoff volume to produce the
specified control level and thus less storage capacity would
be required. However, this is not true for all situations.
Table 7.4 compares the results, for the Minneapolis data, of
the storage requirements produced by the first-order and
uniform concentration models. This is done in terms of the
ratio of storage requirements for both models for a given
treatment rate and control level. For the lower trap effi-
clency more storage is required by the pollutant load model
as the treatment rate increases, as the storage ratio 1is
greater than unity. This phenomenon has been observed by
Nix (1982), and 1is attributed to the fact that relatively
large treatment rates (actually, lower ratios of storage
capacity to treatment rate) relieve the basin fast enough to
allow it to capture less concentrated loads at the end of
many events, and thus the increase in storage requirements.
For the higher trap efficiencies the system works better at
capturing the pollutant load than the runoff load because of
the first flush effect, and less storage is required.

The planner has to make the choice about the objective
of the detentlon system that is designed - whether it is
primarily for pollution control or runoff volume control.
This 1n turn 1s dependent on the occurrence of first-flush

effects at the site. If first-flush effects are evident and
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Table 7.4 Comparison of Runoff and Pollutant Control
Storage Requirements for Previously Full Storage

Ratlo of Pollutant load storage
requirement to runoff volume
storage requirement
Treatment rate 90% control 50% control
(inches/hour)
0.001 -% 0.67
0.002 - 0.89
0.004 - 1.20
0.006 0.96 1.68
0.008 0.93 2.61
0.010 0.97 5.34

* - Points for these rates were along the asymptotic part of
the isoquant and gave very high values of the storage
capaclty, and thus fell outside the useful range.
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pollution control 1is the desired objective then the iso-
quants corresponding to the first—-order model should be
generated.

The use of the statistical method 1s 1llustrated in a

second application, to the city of Denver, Colorado.

Pollutant control isoquant for Denver

As part of the nationwide combined sewer overflow
study, Heany et al. (1977) developed Biochemical Oxygen
Demand (BOD) control curves for several gaged urban catch-
ments 1in the Nation. The isoquants for BOD control were
obtained with the simulation model STORM, whose general
mechanics were discussed in Chapter I. The stormwater
system was operated in the off-line mode wherein runoff
flows directly to the treatment plant at the treatment rate
and is diverted to the storage unit whenever the runoff rate
exceeds the treatment plant capacity. The statistical model
1s applicable to this situation for the case of uniform
pollutant concentration, or the runoff volume model. It is
also applicable for the case of the first-order load model
but only approximately so because, for the off-line case,
the runoff pollutant load does not go in its entirety to the
storage unit first. A part of 1t will go directly to the
treatment plant. This amount, over the runoff event dura-
tion at the glven treatment rate 1is relatively small for

events which requlre diversion and use available storage
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space, so that the statistical model can be applied to this
type of configuration.

The parameters for the model were obtained from the
Hydroscience study (Hydroscience, 1979). These correspond
to the parameters of the statistical study. They are
described 1in Table 7.5. For generating the 1isoquants the
first-flush condition was utilized in the model STORM, with
the first-order decay coefficient discussed in Chapter V.

The previous applications of the statistical model have
shown that for the higher trap efficiencies it 1is reasonable
to assume that some left-over runoff volume will be avail-
able at the end of the previous event. To that effect the
simulation results are compared to the special case of the
statistical 1load model for the extreme conditions of
previously full and empty storage. The procedure is the
same as in the previous section, with new values of the
conditlonal mean runoff intensity generated with the Denver
data. The results are shown in Figure 7.9. Only one set of
i1soquants is 1illustrated, corresponding to the 90% BOD trap
efficlency. 1Isoquants for the other control level gave more
or less similar results.

The results again show good agreement with the simula-
tion results. The simulation isoquant 1s near the statis-~
tical iscquant of the extreme condition. Some discrepancies
may arise due to the approximations involved in simulating

the off-line case and the fact that the Denver runoff data
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Table 7.5 Runoff Parameters for the Denver Simulation

Parameter Description
Year of record 1960
Mean runoff volume, E[le 0.078 in.; coeffi-

cient of wvariation
(c.v.) = 1.49

Mean runoff duration, E[X2] 4.8 hr.#¥; ¢.v. not
available

Mean interevent time, E[X3] 119 hr.; c¢.v. not
available

Adapted from Hydroscience (1979).

* - This parameter was estimated from the rainfall records.
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shows the mean runoff volume with a coefficient of variation
different from unity, which may indicate a different distri-
bution than the exponential, in this case a gamma. Never-
theless the agreement 1s quite good and provides a further
validatlon of the statistical model.

The applications of the following section considers the
situation wherein the system runoff trapping capacity is

limited, and how this affects the shape of the isoquant.

7.3 Applications to Systems of Limited Runoff-Trapping
Capacity

The general formulation of the statistical model
incorporates a parameter that sets a limit on the amount of
runoff that the detention unit can accept during any runoff
event . This parameter has been defined as the runoff
trapping capacity of the stormsewer system. It has been
defined as a constant for any particular system represent-
ing, in a lumped fashion, the total capacity of the system
for capturing the runoff volume. By definition this para-
meter represents the overall potential trapping capacity.
The inlets to the stormsewer are hydraulic control devices
whose capacities are functions of hydraulie and geometrical
properties. The trapping capacity term is a representation
of these devices, or, more precisely, a representation of

the potential capability of these for capturing runoff
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flows. Such a potential is capable of being defined because
runoff depths are not allowed to increase indefinitely over
the urban catchment. Since flow accross the inlets 1is a
function of flow depth over the inlets, the prescription of
maximum allowable depth also specifies a maximum allowable
inlet flow, which for this type of application can be
represented by the trapping capacity term.

A further application along this line arises for the
case of controlled inlet flow, as related to the concept of
dual drainage modeling discussed in Chapter II. In this
procedure the inlet capacity 1s controlled by an in-situ
device that regulates flow, allowing flow into the inlet up
to a certain maximum rate. The excess runoff is diverted to
park storage. This procedure has proved effective in
controlling surcharge of the stormsewer and has been applied
successfully to some locations in Canada (Roussel et al.,
1986; Wisner et al., 1986). The trapping rate as defined in
the statistical model can represent inlet control devices as
employed in the dual drainage concept.

In a theoretical sense, the trapping capacity term
should be a term representative of the hydraulic and hydro-~
logic interactions of the catchment, but the interplay of
the processes 1s quite complex and present efforts can only
account for the major characteristics associated with urban
stormflow which are relevant to the deterministic and event-

based nature of most models. The runoff trapping capacity
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term, c, 1s, 1In a certain sense, a statistical parameter - a
mean rate of runoff arrival at the detention unit that is
controlled by the hydraulic transmission properties of a
particular system under a certain hydrologic input. It also
represents, theoretically, the long-term potential trapping
capacity of the stormwater collection system, so that the
term 1Is not only a spatial parameter but represents temporal
effects as well. This would seem %o suggest the development
of a parameter estimation procedure to assess the value of
the term. The term 1s not merely a rainfall-runoff trans-
formation - 1t 1Incorporates collection system properties
that affect the detention unit's long-term performance.

The present effort i1s not directed at establishing
parameter estimation procedures for the capacity term.
Rather, it 1s directed at defining the parameter and
assessing the manner in which 1t affects the hydraulic or
pollutant control 1isoquants, and thus the design and cost of
detention units. The basis for representing the trapping
system through a parameter have been established and the
solutlon obtained would be applicable to situations which

can be represented as such.

7.3.1 Application to Atlanta

The general statistical model is to be applied to some
of the catchments that have already been analyzed with the

speclal case formulation, now assuming the existence of a
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runoff collection system of 1limited capacity. The first
application 1is to the 24.7 acre catchment in Atlanta. To
chose a realistie value of the density of inlets to the
stormsewer system the inlet density for a 26 acre urban
catchment in Canada 1s assumed to exist for the area. This
1s given by Wisner et al. (1982) as 1.78 inlets per acre,
and 1s considered a very high density. For a 24.7 acre
catchment this would give about 44 inlets.

The actual capacity for each inlet 1is a funetion of
inlet type and the particular geometric arrangement of the
inlet environment. The capacity 1s also affected by in-situ
fleld conditions as they develop during the event. This
would correspond to debris accumulation over the gratings
and obstruction of approach flow by vehicles or other
objects, both over the inlet and along the approach gutter.
To a certain extent the latter represent random effects and
are seldom accounted for in hydraulic models. The runoff
trapping capacity term of the statistical model is a measure
of the overall catchment runoff capture efficiency. If its
true value 1s known it would be a measure of all of the
aforementioned effects. Until field studies are available
to estimate thils parameter accurately suitable estimates
must be obtained for analysis. It will be assumed for this
application that 1inlet flow control devices have been
installed to regulate flows into the sewer system. These

were actually installed 1in the 26 acre catchment described
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by Wisner and Kassem (1982). One of the devices tested was
an orifice plate that allowed a maximum inflow of one cubic
foot per second (efs). Flows exceeding this capacity were
carried further downstream as carryover flow. Eventually,
the excess volume 1is routed to surface storage. Assuming
that all inlets have a maximum capacity of 1 cfs the total
runoff trapping capacity for the Atlanta catchment with 44
Inlets 1s about 1.77 inches per hour, in terms of the total
catchment area.

The runoff data for the city of Atlanta has already
been presented, and is utilized again for this example.
Because the runoff data is avallable no transformation has
to be made to obtain the runoff event duration statistics.
The results of Chapter IV are used to obtain the isoquants,
but a choice must be made of the appropriate equation to use
from the three general expressions available. Generally,
since the equations are to be solved for the storage capa-
clty each eguation 1s solved in turn for a value of the
storage capaclty and a check 1s made with the range of each
equation to determine which solution satisfies its cons-
traints. The one that does is the appropriate solution for
the given set of parameters. As discussed in Chapter IV the
expressions to solve for the 1soquants are differentiated by
the value of the parameter kl. The parameter kl 1s given by

the followilng expression:
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ki = (a - c)xc (7.2)

where a is the treatment, or withdrawal, rate from the
storage device, c¢ is the system runoff trapping capacity
rate, and L9 represents the time base factor that 1is used
to transform the effective rainfall duration into the runoff
duration, an estimate of which 1s the catchment time of
concentratlon, as discussed in Chapter II. The term kl is
always negative, as 1t has been assumed that the system
runoff trapping capacity 1s always greater than the design
treatment rate, otherwise there would be no need for a
detention unit. The negative of Equation (4.1) would
represent a potential amount of runoff volume that could be
made avallable over the duration of the runoff event beyond
the effective rainfall duration. The term a-c¢ 1s the nega-
tive of the difference between the potential rate at which
the system can transmit runoff and the rate at which the
stored runoff is depleted from the detention unit. For the
present example actual runoff data has been generated so
that It 1is not necessary to use X, and 1its value 1s taken
as zero. For this situation the equation that is used to
obtain the storage/treatment isoquant is either of Equations
(4.33) and (4.34), because k;= 0. Expressions for the
required storage capacity for the extreme conditions are
given 1in Equations (4.35) through (4.38).

The shape of the isoquants obtained from the appro-
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priate expressions are similar in shape to the ones obtained
for the special case, but they will be lower than those
obtalned from the special case because of the finite runoff
trapplng capacity of the stormsewer system. This implies
lower storage requirements on the detention system. This
suggests a further application of the methodology in the
sense that variations in storage requirements due to varia-
tlions in system runoff trapping capacity can be assessed to
determine asymptotic values of the trapping capacity for
which negligible variations in storage requirements are
obtained. Such asymptotic rates would establish design
capacities beyond which no additional increases in storage
requirements are obtained.

With a finite value of the trapping capacity there will
exlst a positive probability of exceeding this rate. This
is obfained from Equation (2.29). For the parameters of the
present 1llustration Equation (2.29) predicts less than 2%
chance of exceeding the trapping rate of 1.76 inches/hour,
which indicates a fairly high capacity system. An alterna-
tive use of Equation (2.29) is to specify an exceedance
level and solve for a value of ¢, the trapping rate, which
1s used to set the inlet flow control mechanisms.

A number of inlet control devices are discussed by
Wisner et al. (1986) whose capacities can be used in the
present example to assess the effects of varying system

capacities on the storage/treatment 1soquants, although any
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particular design value could be used. To illustrate the
effects of limited system hydraulic capacities the isoquants
for trap efficiencies of 50% and 90% will be obtained. They
will be obtained only for the extreme case of previously
full storage condition because this will suffice to illus-
trate the varilations of storage requirements produced by
systems of limited capacity. The equation to use 1is either
of Equations (4.35) and (4.36). The difference between the
eguations 1s that Equation (4.35) defines the isoquant in
terms of the runoff volume arriving at the detention unit,
and Equation (4.36) is in terms of the total runoff volume,
which is equal to or greater than the runoff volume arriving
at the detention unit. The results obtained with Equation
(4.35) appear in Figure 7.10, and those obtained with Equa-
tlon (4.36) appear in PFigure 7.1l1. It 1s seen that with
Increasing runoff control less storage would be required
because 1less volume eventually gets down to the detention
unit. Table 7.6 compares the results obtained in terms of
the ratios of required storage capacities for specified trap
efficlency levels and treatment rates, together with values
of the inlet exceedance probability.

The results show that reducing the runoff trapping
capacity of the system reduces storage requirements but
increases the chance of having the system runoff trapping
capaclty exceeded. This excess volume would be diverted to

park storage, or suitably disposed of. The mean excess
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Table 7.6 Comparison of Storage Capacity Requirements
for Systems of Limited Runoff Trapping Capacity
for the Atlanta Catchment

Ratio of unlimited system capacity
storage requirement to specified limit-
ed system capacity storage requirement.

Normalized Runoff trapping capacity (inches/hour)
treatment rate 1.77 0.50 0,12%
5.0 1.04 1.18 1.81

6.0 1.04 1.15 1.72

8.0 1.03 1.14 1.70

10.0 1.04 1.14 1.75

Trapping system
exceedance prob. 1.8% 6.1% 21.2%

*¥ - Hypothetical rate corresponding to 0.1 cfs per inlet
Eorsgo inlets. The other rates are from Wisner et al.
1986).
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runoff can be estimated with Equation (2.43). Since real-
life runoff collection systems are limited capacity systems,
which may be of relatively high capacity, the probabillity
always exists of having an event that would exceed the
capacity. For the traditional system design procedures this
probability would be obtained in terms of the recurrence
associated with design rainfall intensities. The statisti-
cal methodology proposes an event-based procedure for
obtaining the probability of exceeding system capacity in

terms of the actual runoff parameters of the catchment.

Example 7-4: storage estimation for system of limited

trapping capacity.

It is desired to obtain storage capacity requirements
for the Atlanta catchment, for a system of runoff trapping
capacity of ¢ = 0.50 in/hr, and for a normalized treatment
rate of a/QO = 8. Since Qo = 0.00179 in/hr, this implies a
treatment rate a = 0.014 in/hr. The storage estimate 1is
chosen to correspond to the 90% trap efficiency level, in
terms of the runoff volume arriving at the detention unit.
Assuming that the design is to be made for the most critical
condition ~— that of previously full storage =-— Equation
(4.37) is used to determine the storage capacity.

The parameters of the coefficients have already been

defined in Example 7-1. With these, the following values
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are obtained for the coefficients of the storage equation.

= - 4.91 in T
H = 0.073
mg = 0.21 in

Substitution of all terms in Equation (4.37) yields:

- 0.1821n" (0.164 - 0.116)

o
I

or

o
[

0.55 in

In situations wherein pollutant load control is the
major concern the use of inlet control devices would be
advantageous because only the first stages of the runoff
event are captured by the detention unit and they would
carry the larger amount of the pollutant load. This could
result, depending on the conditions, in reduced storage
requirement. The results obtained in this section show the
extent to which storage requirements may be altered by
considering limited-capacity systems.

It 1is desired to transform the rainfall event duration
into a runoff event duration via the transformation of
Equation (2.6). It 1s assumed that the effective rainfall
event duration is given for this case by the rainfall dura-

tion, as an approximation. The transformation of Equation
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(2.6) would determine the catchment runoff duration, or the
hydrograph time base. It i1s assumed 1in the statistical
model that the runoff trapping capacity 1s being exerted
throughout the catchment over the duration of the runoff
event as given by Equation (2.6). As such the potential
amount of runoff that can be trapped by the system over the
event duration represents the maximum runoff volume avail-
able to the detention unit via the runoff conveyance system.
This 1s so because the actual runoff durations over any
particular inlet may vary, but are not expected to be grea-
ter than the catchment hydrograph duration. To achieve the
transformation the parameters of Equation (2.6) have to be
estimated. Because the rainfall duration is assumed to be
equivalent to the effective rainfall duration only the
parameter corresponding to the catchment time of concentra-

tion, x 1s estimated. The other parameter, ass is assumed

c’
equal to unity. If rainfall-runoff records were available a
regression analysis would provide an estimate of the trans-
formation parameters. For the following application an

estimate of the time of concentration will be used as the

parameter estimate.

7.3.2 Application to Minneapolis

For this application the trapping system of limited
capacity 1is considered, as well as the effective rainfall

duration transformation. To account for the limited capa-
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city system a procedure similar to the one employed for the
Atlanta catchment is followed. The inlet density (typical
values are obtained from Wisner et al., 1986), and the total
system runoff trapping capacity are estimated assuming the
existence of inlet flow control, and the isoquants are
evaluated. If inlet control does not exist the trapping
rate 1is estimated from maximum allowable runoff depths over
the catchment. The runoff depths are translated into inlet
flow rates from available rating curves, which in this
situation are 1likely to be described by the orifice flow
equation. Conversely, several design values may be employ-
ed, and the trapping rate most appropriate converted to
inlet capacity specifications.

The event duration transformation 1s also to be
applied. In a sense the event duration statistics that have
been obtained from the simulation models STORM and SWWM are
effective rainfall duration statistics because of the manner
in which the rainfall runoff transformation is achileved.
The coefficient method that has been employed to obtain
isoquants from simulation studies merely transforms the
rainfall event duration into effective duration by applying
a runoff coefficient and a variable infiltration rate. The
effective event duration 1is assumed to represent the actual
runoff duration. Although the model SWWM has refined hydro-
graph generation and routing capabilities, Nix (1982)

employed STORM generated runoff data, using the coefficient
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method, as input to the storage/treatment block of SWWM to
determine the 1soquants because of the cost involved in
actually routing a hydrograph for each of the total number
of events necessary to estimate the isoquant.

In the hydrologic process the effective runoff duration
1s not necessarily equivalent to the overland runoff dura-
tion due to the physical process of runoff flow. To account
for this difference the linear runoff transformation has
been proposed. To account for these effects the parameters
of the transformation are estimated and the transformation
i1s applied in thils application. The parameter to be used is
the time of concentration, as discussed previously. These
are only estimates but what 1s desired is to assess the
relative effect of these considerations on storage capacity
requirements.

The time of concentration was not directly availlable
for the catchment under consideration. It has been estima-
ted by proportioning the catchment area with the average
catchment area and average time of concentration for 48
urban catchments 1in the Nation, obtained by McCuen et al.
(1984).

The equations to be employed for this case are those
given in Article 4.5 of Chapter IV. The procedure has
already been outlined. The isoquants can be obtained either
in terms of the actual runoff volume arriving at the deten-

tion unit or in terms of the total event runoff volume. The
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parameters to be employed appear in Table 7.7. The results
obtained, 1n terms of the runoff volume arriving at the
detention unit, are shown in Figure T7.12, As a general
rule, the larger event durations have greater potential for
capturing higher runoff volumes due to the runoff trapping
rate operating over the event duration. The implication is
that larger runoff volumes can now be trapped by the system.
This can be offset by the fact that the system will be
pumping water for a longer duration, and may actually reduce
storage requirements for low intensity events. This is
11lustrated in Table 7.8, which compares the results obtain-
ed with the general case to those obtained with the special
case in terms of the ratio of storage capacity requirements.

A further application 1s considered for the case of
pollutant loads to assess the effect of the limited capacity
system on the pollution control isoquants.

The parameters to be used in the application appear in
Table 7.9. To simplify the analysis the pollutant trap
efficiency isoquants are obtained only for the case of 20%
storage capacity available at the end of the previous event.
The isoquants appear in Figure 7.13. Only three isoquants
have been obtained, as representative of the overall condi-
tion. Table 7.10 compares the results obtained under the
present conditions with those of the special case 1in the
form of ratios of required storage capacities for the gilven

trap efflciency levels and treatment rates. Again the
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Table 7.7 Parameters of the Statistical Model for the

Case of Limited Runoff Trapping Capacity, for the

Minneapolis Catchment

Parameter

Value

Catchment area

Mean runoff volume

Mean event duration

Mean interevent time

System runoff trapping rate
Estimated time of concentration

Percent of previously available
storage capaclty

640 acres

0.088 inches

7.3 hours

94 hours

0.50 inches/hour

0.60 hours

20
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Figure 7.12. Isoquants for the Minneapolis Catchment, with

Limited Runoff Trapping Capacity.
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Table 7.8 Comparison of Storage Requirements for

Combination of Runoff Rate and Time of

Concentration, for a Treatment Rate of 0.005

inches/hour, in Terms of Storage Ratios for Two Trap

Efficiencies, for the Minneapolis Catchment

Type of Storage
ratio:

Unlimited capacity
system to 0.5 in/hr
trapping rate system

0.5 in/hr rate to
0.5 in/hr rate

with time of con-
centration 0.6hr.

Trap efficiency
90%
50%

1.05

0.98
1.10
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Table 7.9 Parameters for the Pollution Control Isoquants

for Systems of Limited Runoff Trapping Capacity,

for the Minneapolis Catchment

Parameter

Value

Catchment area

Mean runoff volume

Mean event duration

Mean interevent time

System runoff trapping rate

Estimated time of concentration

percent of previously available storage

First-order pollutant washoff rate

640 acres

0.088 inches

7.3 hours

94 hours

0.12 inches/hour
0.6 hour

20

4.6 hp ot
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Figure 7.13 . Isoquants for Suspended Solids Control for
Systems of Limited Trapping Capacity, for

the Minneapolis Catchment.
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Table 7.10 Comparison of Storage Requirements for
Pollutant Load Control, for the Minneapolils
Catchment, in Terms of Storage Capacity Ratios,
for Selected Treatment Rates

Ratio of storage for unlimited
system capaclity to storage of
limited system capacity of 0.12

inches/hour
Treatment Rate (in/hr): 0.002 0.006 0.010
Trap efficiency level
90% 1.08 1.08 1.10
60% 1.04 1.05 1.07
30% 1.02 1.04 1.06
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results show that systems with limited runoff capture

capacity require less storage.

Example 7-5: pollutant trap efficiency.

For this application the design of a particular system
is to be evaluated in terms of its pollutant trap effi-
clency.

It has been assumed that the pollutant washoff coeffi-
cient in the first order model is given by K = 4.6 1n_1,
corresponding to the 90% washoff presumed to occur dur ing
the first hour of the runoff event. Although this value is
widely used, in reality the value of this parameter is
defined by on-site conditions and the nature of the parti-
cular pollutant under consideration. If different pollu-
tants yield different coefficilents then the trap efflciency
for each can be assessed.

Patry (1983) has found values of K that differ signifi-
cantly from the common value. For Suspended Solids (3883)
Patry found a K of 11.0 in '. For Chemical Oxygen Demand
(COD) a wvalue of 17.1 in_l was obtalned. These values are
assumed to hold for the present example.

Considering the Minneapolis catchment it 1is desired to
estimate the pollutant trap efficiency in terms of SS and
COD, for a stormwater detention of capacity b = 0.10 in, and

runoff removal rate of a = 0.005 in/hr. The runoff statis-

tics have been presented in Example 7-3.
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It is assumed that the system runoff trapping capacity
is ¢ = 0.5 in/hr; the time of concentration X, = 0.6 hr;
and the percent of previously available storge 6= 75%. The
mean runoff intensity is given by I(a) = 0.141 in/hr. The
value of p is obtained at 1.07.

The appropriate isoquant equation is chosen from the
three available cases. This depends on the value of CX,
Because pb = 0.107 in. is less than cx, = 0.3 in., Equation
(5.62), corresponding to Case I is utilized. The values of
the coefficients, with the SS washoff coefficlent of K =

11.0 1n_l, are given below:

1]

ry 0.49 P0 1b

d)

0.45 P 1b
a, = 0.41 P_ 1b

The value of PO need not be specifled as 1t will cancel upon
obtaining the trap efficiency.

The previously available storage capacity 1s given by
8, = 0.075 in.

Substitution in Equation (5.62) yields the mean value

of the SS load trapped by storage:

E[L] = 0.49 PO - 0.45 PO exp(-2.45) - 0.041 PO exp(-1.79)

ylelding:
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E[L] = 0.4y PO 1b

The trap efficiency is obtained from Equation (5.76),

in terms of the actual pollutant load arriving at the deten-

tlon unit. This load 1s obtained from Equation (5.73),

which yields for SS:

BLL; ]

= 0.49 PO

1b

The S8 trap efficiency 1is given by the ratio of loads

as:

pQI,Z= 89.8

Proceeding similarly for the case of COD, now with K

1

%

17.1 in~ , the following new parameter and coefficient

values are obtained:

]

a3
ap
E[L]
E[Lt,Z]

The GOD trap efficiency is:

Pg,z = 95%

0.60 P
(o)
0.56 PO
0.040 P
0
0.57 P
0.60 P
[¢]

1b
1b
1b
1b

1b
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The unit is more efficient at capturing the COD load.
The next step in the analysis 1s to determine which
storage/treatment rate combination is more efficient in

terms of the required control efficiency and overall cost.

7.4 Detention Storage Optimization

The optimization problem has been formulated in Chapter
VI in terms of production function theory. The obJective
was to minimize costs while providing a specified runoff, or
pollutant, control level in the form of the trap efficiency.
The isoquants serve as the constraint of the process. The
costs are related to the storage and treatment costs in
terms of storage capacity and treatment rate to be provided.
The variables to be optimized are the storage capacity and
treatment rate. While other parameters could be considered
as representing decision variables as well, such as the
system runoff trapping capacity and the capture efficiency
itself, the most important are the ones chosen because they
represent the major decision elements in the system, and
they 1lend themselves to an efficlent, and manageable,
optimization formulation. For the reasons given in Chapter
VI the actual required values of the other parameters are
chosen by regulating agencies or other entities.

The objective of the optimization 1is the determination
of the optimal expansion path, as defined in Chapter VI.

The expansion path represents the locus of efficient, in
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terms of minimum cost, combinations of storage capaclty and
treatment rate providing a certain amount of flow or pollu-
tant capture efficlency. The planner then makes use of the
expansion path within the larger framework of the facilities
planning problem. The majJor advantage of the statistical
model within the context of this problem is that it provides
for, generally, closed-form solutions for the storage/
treatment 1isoquant constraints of the optimization problem,
without the need to perform frequency analysis of simulation
results.

Nix (1982) has fitted mathematical production functions
to the isoquants obtained from simulation in an effort to
obtain analytical expressions for the isoquant. Also, Heany
(1977) has employed a trascendental equation as a general
expression to use for isoquants. However useful, these lack
the éhysical and theoretical basis that the statistical
model provides, specially for areas where simulation studies
are not conducted to validate the use of a prescribed mathe-
matical funetion. It is in part for this reason that gra-
phical optimization is undertaken in the absence of adequate
analytical expressions. One of the difficulties associlated
with graphical optimization techniques is that of defining
the point of tangency between the isocost lines and the
isoquant, especially for non-linear isoquants. Nix (1982)
has developed a graphical optimization technique in cost

space to clrcumvent this difficulty, but some of the incon-
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veniences in working with graphical techniques remain.

The analytical nature of the isoquants facilitates the
optimization procedure as the problem can be formulated
analitically without the need for graphical solutions,
although these can still be applied, now more efficiently
because any point along the isoquant can be analytically
obtained. A relatively simple procedure that yields the
expansion path is to equate the slope of the 1soquant to the
slope of the isocost curve, and then solve for the optimal
values of storage capacity and treatment rate. The slope of
the 1isoquant 1s obtained from the first derivative of the
function. Some difficulty exists in the algebra due to the
non-linear nature of the isoquants, and to the faect that
several expressions may be required to define the isoquants
for the general case. Nevertheless a considerable saving in
effort 1s achleved in the long run over the graphical
techniques.

The cost function associated with the optimization
problem has already been defined. For the analysis in this
section the representative costs associated with storage of
stormwater and treatment will be utilized, but non-linear
cost functilons can also be utilized. The representative
costs pertain to average conditions. It 1is possible, even
likely, that local costs will vary, and coeffieclents will
have to be determined appropriately. The representative

annual costs for the city of Minneapolis, obtained from the
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study by Nix et al. (1977), are shown in Table T7.1ll, along
with other parameters. The costs represent average costs
and 1ncorporate all related costs that add on yearly, such
as operation and maintenance costs.

The optimal solution can be found either in terms of
the flow capture efficiency or the pollutant capture
efficiency. The applications will be 1llustrated for the
Minneapolls catchment, considering the different situations
that have been analyzed thus far. The expansion path for
the runoff volume control isoquant 1s presented in Figure
7.14. The expansion path for the pollutant control isoquant
1s presented in Figure 7.15. The optimal combination of
treatment rate and storage capacity are obtained along the
expansion path. In Figure 7.16 the difference between the
two approaches, 1In terms of the total cost as a functilon of
the céntrol level, 1s illustrated. ‘

It is seen that the pollutant control formulation will
yield lower overall costs than that for runoff control.
This 1s due to the first flush condition regarding pollutant
loads. In situations wherein the pollutant concentration is
approximately uniform over the event duration higher control
costs are to be expected because greater runoff volumes must

be trapped, requiring larger storage capacities.

Example 7-6: formulation of an optimization problem.

In this example an optimization problem 1s formulated
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Table 7.11 Unit costs of Stormwater Management for the

city of Minneapolis

Item

Value

Urbanized area
Population density

Annual unit cost for secondary
treatment

Annual unit cost of storage

215,000 acres

7.92 peréons per acre

$ 9810 /acre-in/hr

$ 219 /acre-in

Costs are in 1977 dollars.
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to obtain a point on the expansion path for a detention
unit, for the Minneapolis catchment. For simplicity the
special case is considered (corresponding to a system of un-
limited runoff trapping capacity). This is done for runoff
volume control, to illustrate the formulation used to obtain
Figure 7.14.

The statistical parameters for the Minneapolis catch-
ment have been presented in earlier examples. It 1is assumed
that 25% of the storage capacity is available at the end of
the previous event.

The formulation of the general optimization problem is
glven in Equations (6.13) and (6.14). The cost funection to
be minimized 1is defined with the unit costs of Table 7.11.
For the 640 acre catchment the total yearly cost in dollars

is given by:
_ 6 5
C =6.78 (x 107 )a + 1.402 (x 10”)b

where a 1s the treatment rate and b the storage capa-
city.

The constraint of the formulation corresponds to the
storage/treatment isoquant, 1in terms of the detention unit
trap efficiency, which is assumed to be p = 80%. For this
case the 1soquant is obtained from Equations (4.34) and
(4.39). Substitution of the catchment parameters in these

equatlons yields:
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H[82.9a exp(-11.36b - nggggb) + exp(-2.84b)] = 0.2
where
H = 0.0015

(11.36a + 0.137)(11.36a + 0.011)

and a, b > 0.

The solution would yileld the optimal values of a and b
for the specified trap efficiency; and represents a point on
the expansion path corresponding to the 80% trap efficiency.

This application completes the illustrations with the
statistical model. Overall the applications have shown good
agreement wilth simulation results and have provided insight
into the nature of the stormwater detention problem, with
tools that are relatively straightforward to apply and avoid
the need of extensive simulation.

The following Chapter will present the conclusions to
be obtained from this study and the recommendations for

further research.
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CHAPTER VIII

Conclusions and Recommendations

8.1 Conclusions

A statistical model has been formulated for the study
of stormwater detention units. The results obtained through
the statistical approach have compared favorably with the
results obtained from detailed simulation studies. The

following general conclusions are obtained from this study:

a) The statistical approach is proven to be a
valid approach to stormwater detention plan-
ning. Results have compared favorably to
those obtained from simulation models, in
terms of the storage/treatment isoquants for
runoff and pollutant load control.

b) The wuse of exponential distributions for
process varlables may be somewhat limiting in
some cases, but the analytical tractability
obtained with exponential distributions is a
major advantage of the formulation.

c¢) Because of its analytical, largely closed-form
formulation, the statistical model can be
easlly 1Incorporated into comprehensive 1land

use planning frameworks.
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d) The formulation of the optimization problem is
greatly facilitated with the formulation of
analytical device performance measures, in the
form of storage/treatment isoquants. These
represent the constraints in the optimization
problem.

e) The use of statistical models is particularly
useful when long-term effects are being consi-
dered, since simulation models are limited in
the number of simulation runs that can be
made, specially in the case of multivariate

distributions.

8.2 Recommendations

Several recommendations can be made for further
reseafch on urban stormwater management. A comprehensive
listing of these 1is given by Heany (1986), whose efforts
will not be duplicated here. Needs involve all aspects of
stormwater planning, such as data collection and modeling.
Statistical models share these needs, but also have parti-
cular requirements.

The statistical method has been shown to be a viable
approach to planning, addressing the fundamental randomness
of the assoclated hydrologic processes. Recommendations for

further research are given below:
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A particular area that is in need of further
study 1s pollutant load estimation. Efforts
need to be undertaken to account for the
effects of temporal and spatial variabilities
of surface pollutant load sources. The
dynamlec nature of +the urban environment
requires an accounting of the parameters which
would  help describe these variabilities.
Regressions cannot properly account for the
variabilities, unless these are periodically
updated with fresh data whenever significant
land use changes occur.

Additional efforts should be directed towards
the incorporation of pollutant removal func-
tions for the detention unit. At present,
only limited results have been obtained with
statistical models due to the difficulty of
incorporating the particulars of pollutant
removal mechanisms within the general concep-
tualization of the runoff process found in
most statistical formulations. Usually a
simple removal coefficient 1s utilized.

Other aspects for which attention 1s recom-
mended Include those related to the formula-
tion of adequate receiving water concentration

distributions, based on the actual physics of
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pollutant mixing and transport.

Further development of statistical methods should see a
more detailed representation of the urban stormwater
collection system, and thus a more complex formulation
of the runoff process. It 1is expected that these
developments will eventually allow evaluation of urban
best management practices for runoff control to the
extent that is presently being accomplished by largely
deterministic approaches (Schueler, 1987). The need to
study the long-term behaviour of stormwater detention
units, and to account for the evident randomness of the
hydrologic processes that drive the system, make the
statistical approach to urban stormwater management a
rewarding field of endeavor.

In Puerto Rico very little has been done to assess the
urban runoff problem. No appreciable effort has been
undertaken to study the problem from the point of view
considered in this study. Studies along this line are
necessary in view of the high level of urban development
and the potential environmental impact of uncontrclled

storm flows.
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APPENDIX A

The major analytical advantage of working with exponen-
tial distributions is the fact that integrals of exponential
functions yleld exponential functions. The integrations for
the cumulative distributions and expectations throughout the
present work have benefited from this property.

All the integrations performed in this work are of the

following general type:
T h{p) T
/" h(p) explg(p)xldx =) explg(p)x] (A-1)
g g

where h(p) and g(p) are expressions in terms of the process
parameter set p; x 1Is the random variable, and & and T are
the 1imits of integration.

The other type of integration 1s for the expectation of
the randem variable. The general expression for thils type
of integral is given by:

£'x0(p) explg(p)xlax = [x SIS expla(@)x]|  (A-2)

T
£

The actual form of the parameter function depends on
the particular formulation that 1s evaluated. The particu-
lar algebraic details for each expression are not presented,
but each 1s evaluated through some form of the above two

expressions.



