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ABSTRACT

Free fa]liﬁg particle due to gravity in the
linear density stratified fluid was investigated
theoretically and experimentally. The equations
governing the particle mofion in a homogeneous
viscous fluid can be applied to this case if the
density stratified fluid body is considered to be
composed of infinite homogeneous layers of finite
thickness, The particle motion is found to be a
function of the fluid density gradient. The effect
of the density gradient is very pronounced for the
particle-fluid density ratio aimost equal to one.
Fer high particle-fluid density ratio, the density
gradient efféct is not appreciable. The proposed
ca]culation‘of particle displacement can well describe
the phenomena of the particle sedimentatien in the
zones of thermoclines in most of the natural water

bodies.
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CHAPTER 1I- INTRODUCTION

I-1 General Description

Solid particles settling in the environment of
density stratified fluid is one of the important
sedimentation phenomena. Ocean, lake and reservoir
fluid are commonly known to be stratified due to
the spatial differences of density, salinity and
temperature. Particle sedimentation in such a non-
homaogeneous fluid is different from that in the
homogeneous fluid. An investigation on the motion
of a particle free falling in the density stratified
fluid will give the fundamental principle for the
analysis of many complex sedimentation problems.
Examples to show the widespread applications of this
type of particle motion in stratified fluid are:
sedimentation problems and density currents in lakes
and reservoirs, depoéition of marine sediment,
settling of sediment in estuaries and river mouths.
These problems are closely related to the water

resources management and the water pollution control.

I-2 Historical Studies and Scope of This Investigation

Accelerated and steady state motion of a spherical

particle in a viscous fluid of infinite extent has



been studied extensively. The results are well pre-
sented by Brush et al {1), Hjelmfelt and Mockros (4).
However, the studies are for constant fluid density
with respect to time and gpace. It is expected that
the particle motion would behave differently if the
density of the ambient fluid s changed resulting

from the density stratification. This report will
present the study of the motion of a spherical particle
falling freely due to the gravitational force in a -
linear density stratified fluid.

Most density stratification in the nature water
bodies can be classified in two categories, the two-
layer systemland the system of linear density stratifi-
cation. The_density stratification will receive
further diécussion in chapter 2. The two-layer system
consists of two homogeneous density zones. Particles
settling in such an environment can be analysed using
the results from the previous studies by treating the
particle motion within each individuaf homogeneous zone,
For the other case of Tinear stratified fluid, density
increased linearly in depth, analyses is made through
the following concept,

Consider a iinearly stratified water body to be
composed of an infinite number of gery thin layers.
Each layer has constant density and thickness in the

same order of magnitude as the size of the particle.



Then, the previously developed theories hold in each
layer. In other words, the density parameter
appearing in the governing equation of motion for
the particle can be considéred as constant Tocally
in time or space. Of course, this is an approxima-
tion. However, the results of this study will show
a very good agreement between the analytical results

and the experimental data.



CHAPTER II- THEORETICAL CONSIDERATIONS

IT-1 Equation_of Motion for the Free Falling Particle

in Homogeneous Viscous Fluid

The particle is assumed to be spherical with
diameter d and density f’s. The density and the
dynamic viscosity of the fluid are F and i . Denoting
Ms and M as the mass of the sphere and the mass of the
fluid displaced by the sphere, the equation of the
unsteady motion for a freé falling spherical particle

in a viscous fluid of infinite extent is (6)
ny\dv ¢ -
(m )“_"1'31!(((.1\/"1“ d f\ﬂfd ar —dt (ms '”).Cj _____ (z-1)

In which, V is the particle velocity;. t is the time:

T is a time interval less than t; and g is the accelera-
tion due to gravity. In this relation, the first term
is the mass times the acceleration of-the sphere; the
second term is the acceleration of the fluid added mass.
The third terﬁ is the steady state drag. The fourth

term is Basset history term which corrects the viscous
drag for the transient condition. The last term is the
buoyant force. The added mass coefficient is assumed

to remain equal to 1/2 for the sphere moving at the

time of acceleration.



Equation (2-1) is based on neglecting the con-
vective acceleration in the Navier-Stokes equation
and considering the drag force to be linear. For
particie motion outside Stokes range, the resistant
force is no longer a linear function of the particle
velocity V. The drag is & function of the drag
coefficient CD' [f Cp is in terms of the instantaneous
Reynolds number [K, based on the instantaneous particle
velocity, the equation for the particle motion above -

the Stokes range becomes

t
i 2 dV
eVl a3 e
byt \k ielVad g funLL % S R 34 5.9
a\i 3 -—;’\jt; 2 Ay l"' —= --\JL _{\!.li}.—“l)J \_._}
L L
J’
in which

sxmuvd = G I vl (23)

where K is a correction coefficient in terms of an
empirical expression for the convenience of digital

computer calculations., (7)



K=L(75R"+6.0) (2-4)

and

5 Vpd
l#\):—\i{;(; (2-5)

P

I11-2 Equation of Motion for the Free Falling Particle

in Density Stratified Fluid

As can be seen in Equation (2-1) and Equation (2-2),
the veIocity-of the particle is a function of the
variable of time. All.other parameters are constant
with respect to time. In a density sfratified fluid,
the density of the fluid is a function of space only.
Hence the equations can be solved by holding the fluid
density to be constant with respect to time. For the
present problem, the particlie motion is in the gravita-
tional direction along which the density is stratified.
Thus, the two governing equations in Section II-1 remain
to be the same eguations of motion for a free falling
particle in density stratified fluid. It is noted

from the governing equations that the density field of the



fluid has effect on the particle motion thraugh the

terms of added mass, Basset history, and buoyant force.

{I1-3 Density Stratified Fluid

In general, a nature water body such as lake &
ocean possesses a density field in common (2). The
upper zone is called epilimnion in which the density
is faif]y constant. The lower zone is the hypolimnion
which is also of nearly constant density and greater
than the epilimnion. The transition between the two
zones is so called the thermocline., This zone is thin
in depth compared with the other two zones. The density
gradient in fhe thermocline varies from very steep to
very mild. Numerous thermoclines are nearly linear in
temperature and density stratification. In effect the
typical stratified environment consists of zones of
either constant density or Tinearly sfratffied zones.

The constant density zones can be considered as
homogeneous fluid. The thermoclines &re considered as
non-homogeneous field increasing in density linearly
with depth. The former cases are described by f=
constant, The thermocline is represented by the follow-

ing equatian.

- - ()= R-G(1-h) (2-6)



In which f is the density at any depth h measuring
from the top of the thermocline. Fo is the density
at the bottom of the thermocline. G is the density
gradient. Y is the thicgness of the thermocline.
If the thermocline is extremely steep, the density
environment becomes a two-layered field.

The particle motion in two-layered field can be
resolved into particle motion in two separated zones
of homogenecus field. To study the particle motion '’
in a Tinear density stratified field is the main in-
terest of this research. Thus,one will be able to
describe the particle settling due to the gravity
in mast of fhe nature water bodies with the complete
information of particle motion in both homogeneous

and linealy stratified density field.

[1-4 Solution for Particle Velocity within the Stokes

Range _
Applying a Laplace transform with L {V (t}} = f (s)

and ¥ {t) = V¥ (0) = 0, equation (2-1) may be transformed

intec a rearranged form as

- - e —{4ath - t —-‘—{—-——--
| = )J __.(,C_Ti"_bi._.+ ab &b, Wacb) (2-7)
- (fi+|) A5 S 4B \E+b



in which

(2-8)

The inverse transform gives the solution, after

simplification, as

f%ﬁ T
(B-N3 t ,.
\“/‘EI:TTLM* i Heu‘gi@dt) b b)t__)/\.iﬂ.(bb )] (2-4)

in which
[ 2 0 _Uz . _
€r C(X " e cbj: [—-er—k@ . (2-10)
X

where y is the dummy variable and x is the argument
of the error function. As t—>0C, it may be shown,
by L” Hospital”s rule, that the particle approaches

its "local" terminal fall velacity VT'

ﬂ, 2

(51§ ,,

- i, T S kZ-Ii)
Vs 18/
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The term 6f terminal fall velocity is a commonly
used terminology in the field of sedimentation. It is
referred to the homogeneous density field because all
parameters in the expresgion are not function of
time anymore as t—s00. However, for the case of
linear density strafification, this expression is
no longer valid. The fluid density is a function of
depth. As the particle falls, the density of the
surrounding fluid keeps changing. Therefore, the
particle velocity is a function of density, depth
or time. In fact, no finite terminal velocity can
be reached in a linealy density stratified fluid of
infinite exfent. This expression is used here for
quasi state terminal fall velocity based on the local
ambient fluid density.

For density ratios greater than.0.625, the
coefficients a and b in equation (2-8} become imaginary.
When the density ratio is equal to 0.625 , the solution
is special because the coefficients a-and b are equal.

The solution is found as

, 5 ’l
p Q_i)‘ i{w". f)!ﬁ ; ,‘?' (l\“L Ry T, o
VBT o o] )
i1

RSN
152

i

in which
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40
Q=a= bhlctl (53

I11-5 Solution for Particle Velocity above the Stokes Range

“The solution to equation {2-2) can be obtained as following

ing by'hoiding K as a constant with respect to time,.

; NG 22
{a) For Hg*i_ﬁ -~
B D |
(& ‘1}3 (ft b
\f IL'—** {ii_ < fe 14 )
L, L_a,bl a.a,- b)f’*it.lﬁ, g T ( a0 er&(bnf (2-14
in which ._'
& L 4 i3 i(__ili___ SER
Liaddi T i ;; . & 1y fq (2'f5)
'(f[T*‘.J‘f)(J \!LI\) r,’.) L;lj *é)

(b) For q_#“ ok
ez
4 T &t '
\/'[(-E’:'—)-[)-][I a"’t = (20 -De er§ (@ LIJC)] Q2-16)

fH

2

in which L”"
“Tod | (2-47)

(c) The steady state solution fis

|
a.?af

fl

Ve Ve { (R (2-13)
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I[I-6 Numerical Computation of the Particle Displace-

ment

In general, the particle displacement fields
are calculated by integr;tion directly from the
velocity fields by means by computer. However, it
is still very interesting to show the analytical
form for the displacement of the sphere resulting
from the intergration of the velocity field. The
displacement -—— time relation can be compared
directly with the experimental results te verify
the proposed mathematical model, equations (2-1)
and {2-2). Taking the motion of the sphere within

b7

stokes range as an example, the displacements X

7. Qavt
LVt 2 3§~ebf*£"“(“‘r')“' b3
a : ol
_B(a1)&161h(bt)—|+f$% J} (7-19)
(b &=0t25 -
k ) -
3 3 ; 6t -
Z= \/ir % ™ _f:]% +(9_-t~'l%) - trﬂrk (4‘r€)j (2-26)

In the present study, the disp1acemeﬁt field
is obtained from the integration of the velocity field.
The solution which have been obtained for particle
velocity, within and above the stokes range, are based

upon K and (9 being held constant Tocally in time,
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As in fact, both the fluid density and the correction
coefficient are variables. Consequently, these solu-
tions are approximate in that these two parameters
are determined using local values averaged over the
time increments. The procedures for the numerical
computation of the velocities are (5):
a- For the first time step, compute the constants
@ and b and then V¥ for a given fluid viscosity,
sphere diameter, the sphere to ambient fluid
density ratio and the time increment,
b- Using the results of step (a) compute K and F
for the next time increment.
c- Repeat step (b} by using the results from step
(b) for new X, f and time increment and so on.
Where veldcities over two successive time intervals
are averaged for each computation followed.
The errcor function is computed directly using
IBM 360 computer in which the solution, equation
(2-9) is computed using complex arguments. The
‘real part of V is the desired quantity since it can
be shown that V is a real number. The camplex error
function is evaluated using the infinite series
approximation as shown below. The convergence of the

series is rather fast,
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in which
Wiy )= ~-i“<-ff~?<@wI}t-w'n-ﬂYCuang)w Gubm(on2ey) G2
lj. £ "j):ﬁf\‘ (—-L’ur'J]?\})-f:J Y QXH} i (5_,-}1[}: hj)(@ogwp (2-73)

& -it
Cixlj = Al LJ: %f(j%

(2-24)
The real error function is computed by using the
rational approximation for [x] <3 and asymtotic
expansion for Ix| >3.
(a) For |[x]| <3.
¥ ot Ly : {7 _2:)
ey Cﬂlz)*(J”+O{(4CQX.+“‘+TIEY +E(x) Ll
in which
Al = 0.0705230784
AZ = 0.0422820123
A, = 0.0082705272
3 Loz T )
A4 = 0.0010520143
A_ = 0.0002765762

Ar = 0,0000430638
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and

| F
< 3x[0

] ace. ol

(b} For |x| >3
S
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CHAPTER III- EXPERIMENTAL CONSIDERATIONS

II1-1 Experimental Apparatus

The motion of the free falling sphere was performed
inside a test tank where density stratified fluid
was filled. The tank was cylindrical with inside
diameter of 1 ft and height of § ft, This tank was
made of transparent lucite so that pictures of particle
motion could be taken by means of photographic tech- |
niques. Figures (1) and (2) show the set up photograph-
ically and schematically. As is shown in figures,
scale with minimum readings of 1/16 inches was installed
to measure the particle displacement. In addition,
the time scale associated with the particle displacement
was measured by a digital time counter. A universaI
counter-timer, Model 3901 from Dynasciences Corparation
was used (See Figure 3). The timer eﬁab]es the time

recording of accuracy to 0.001 second,



=T

Lk 4

=
eﬁ i

FIGURe 1- GENERAL VIEW OF THE EXPERIMENTAL APPARATUS
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FIGURE 3- MEASUREMENTS OF TIME AND PARTICLE DISPLACEMENT
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The pictures of the particle motion, fixed scale,
and digital timer were taken by a camera about 40 feet
away from the test section. Advantage of ;his scheme
of taking data was the minimization of the inherent
error so that data correction could be neglected.
Sources of errors were photographic due to the distortion
of the scale and images of the sphere through
use of the telephoto lens. A MNikon F camera with Nikon
F-36 motor driver and Nikkor-Auto 300™ £-2 5 lens
was used. The motor unit enabled sequential photo-
graphys to be taken at a rate of approximately four
exnosures per second. Kodak Tri-X Pan film with ASA
400 was used. With two reflector spot lights totaling
300 watts, the best exposure sgttings were T/4.5 at
1/1000 second{ This provided a short duration, high
contrast picture of the black sphere against the white
background. In addition, this shuttef speed enabled
time records to be made by the incorporation of digital
time counter. The films of the particle motion were
enlarged for the ease of reading by means of the en-
larger. Data of the particle displacement and time
were takenfor the comparison wifh the analytical results
to verify the mathematical modetl.

Black holiow plastic beeds with tap water inside
~were used as the particles for this experiment., The

diameters are 5/8 inches and their specific gravity



-21-

are 1.17. This specific gravity of the sphere is
s]ight]y greater than that of the fluid. The advantage
was that the sphere would not fall down to the bottom
of the tank in a very short time period and enabled
more film exposures being made for the entire history

of the particle motion.

111-2 Creation of Density Stratified Fluid

The stratification used in this expériment wWas
estahlished by creating gradient of salt concentratién
in the test tank. The salt used for this purpose
was common food grade sodium chloride, NaCl,

Following the similar stratification procedures
performed by Fox {3), the apparatus used is shown
schematically in Figure 2. Two tanks of identical
size with 2 feet diameter and 3 1/2 feet nigh were
connected hydrau]ica11y by a 1 inch tubing which
served as a siphon (see Figure 4). Tank number one
was filled with tap water. Tank number two was filled
with salt water of known concentration and of the
same volume as tank number one. As the salt water
was continuously withdrawn into the test tank through
a special filling device, the fresh water in tank
number one will continuously go to salt water tank
and keep the water elevation the same in two tanks

via siphon. A mixer was installed at the tep of salt



PP

FIGURE 4- APPARATUS FOR CREATING DENSITY STRATIFIED FLUID
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water tank to keep the salt water well mixed all the
time. Thus, the salt concentration decreased as the
time increased due to the continueous withdraw of

salt water. Finally, the*effluent from salt water

tank being accumulated in the test tank exhibitted

a linear variation in density with elevation, This
method was to carefully float lighter fluid atop
heavier fluid. A special filling device was required
to reduce the vertical mixing. The filling mechanism,
was composed of a floating p]ate.on which a vertical
intake tubing was attached. This tubing was connected
to the discharae valve of the salt water tank. Keeping
the flow rate of the effluent as small as pessible, one
would be able to convert the vgrtica] momentum of the
fluid enterihg the device to a very slight horizeontal
momentum so the fluid gently spreaded out on the surface.
This type of creating laboratory strafifications is
rather time consuming. For instance, it took about
ten hours to complete the filling process. Anather
type of filling mechanism is to Tift up lighter fluid
by underriding it with heavier fluid. In that case
the tank number one should be filled with salt water
and with fresh water in tank number two. An invefted
funnel placing at the bottom of the tank can be used
as the filling device. The Tatter method was used

for this experiment since the filling time {is shorter
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than the former method.

In the stratifﬁcation procedures adopted., it can
be proved mathematically that the variation in fluid
density (or salt concentrétion) with depth 1is indeed
linear. peferring to Figure 2, tank one and two have
jdentical cross—sectional areas A. The depth of water
in both tank js H above the tank base. The initial
conditions are: t =0, B = Ho, the jpnitial height;
¢ = 0 in tank two; ¢ = Co in tank one. C 1is the salt
concentration at any time in % by weight. Applying
one—dimensiona1 mass batance to the system, the

following relation is obtained.
3 o |
M S T =0 (3,

where ¥ is the total volume of fFluid in two tanks.
Q is the discharge from tank two and is propurtiona1

1/2
te H / from energy consideration. Hence
aASE =-kir o

where k is a proportional constant. Consideration of

thi .
e conservation of mass for the concentration species
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yields,
_dgic).f.aczo . | (3'3)

Substituting eguation (3-2) into (3-4), one arrives

d de -
H C-Co (3- 5 )

The solution to this equation becomes

a H
,er(t?"(?;:=ﬂJﬁP4

U

{3-4)

W,

After evalution of the limits of integration, the final

solution is,
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WL TV ()

Thus, the result shows the salt concentration of the
effluent is a linear function of H, Consequently,

the fluid density decreases linearly in the test
tank as the depth of fluid increases. The relation

between F and C is as fallowing

SN -

fi is thedensity of the fresh water.

111-3 Measurement of Density Profile

In order to verify experimentally that the density
stratification is indeed linear, density field was
measured. The density gradient was calculated from the
data of density profile in the test tank, Fluid density
was measured indirectly by means of a conductivity

probe in conjunction with a conductivity bridge. The



L

fluid density was correTafed‘with and represented by

the conductivity of the salt solution. A YSI Model

31 Conductivity Bridge and¥YSI Model 3402 Conductivity
Cell as shown in Figure & here used for this measurement,
This required the calibration work. Several standard
salt soclutions of different known concentrations were
prepared. The unit for the concentration of the soclution
was in % by weight. The unit for the output from the
conductivity bridge was in micromhos. The calibra-

tion curve is shown in Figure 6.

As soon as the stratification procedures were
finished, measurements of the density were made by
traveling the probe vertically downwards and making
several stops. The readings from the conductivity
bridge were takeﬁ at each stop and the corresponding:
concentrations were found. A typical density profile
measured is shown in Figure 7. The result shows that
the variation in density with depth of water is linear

The density gradient is egqual to the sﬁope of the

straight line.

IIT-4 General Experimental Steps

The following steps were performed in each run,
1. Fill up the test tank with density stratifled fluid.
2. Measure the density profile and calculate the den-

sity gradient.
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Turn on the digital time counter.

Release the sphere and take the picture of particle
motion.

Develope the film.

Take the data of particle displacement and time

from the film through the use of enlarger.

Plot dimensionless quantities of particle displacement

against time and compare with analytical results.
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CHAPTER IV¥- RESULTS AND DISCUSSIONS

Particle motion in several different density
gradients of the linear density stratified fluid
have been investigated by ‘means of studying the mathema-
tical model. The time history of the particle dis-
placement is of particular interesting. The dimensionless
displacement versus dimensionless time are plotted in
figure 8 for different fluid density gradients. They
are numerical results from the computer. As can be
seen from the curves, the displacement of particle
is indeed a function of the fluid density gradient.
The motion of the particle is slower with the increase
of the density gradient. To get an idea of the order
of magnitude of the particle motion, the total dis-
nlacements o% the free falling particle (starting at
zero velocity) at the end of the firs; second in
different density gradients are tabulated in Table
I. At that moment, the particle has already reached
its terminal fall velocity based on the local ambient
fluid density.

The results shown above are based on the steel
particle with specific gravity of 7.8. It is noted
that the differences in particle displacements for
various density gradients are not very appreciable.
This can be seen clearly in Figure 8 that the difference

in displacement between density gradients of 0.005 s]ug/ft4



40

wdds

35

Dens
J {s1u

q/ft4}

ity Gradient,

0.0

/0.1

]

30

uU.

1.

25

20

Displacement z/d

50

10

Time

Yt

ek

L1

1 : 10
IGURE 8- Time History of Particle Motion in Stratified F

0

1y
tJ

10
id
)

of Different Density Gradients (fﬁ=15-09 slug/f



-34-

TABLE 1

Particle Motion in Different Density Gradiente

b B ] L] R i
' Density ' *Displacement ! !
' Gradient ! ' v !
' G (S}Ug) ! i ! VT .
1 1 1 1
. (et " d , ,
T T . ] T
! 0,005 ' 365.9425 . 1 !
' 0.030 : 35,7572 K 1 :
1 T T T
- 0.050 ' 35.6114 ; 1 !
T - ;
! 0.100 ! 35.2563 ! 1 !
! 0.250 ! 34.1510 ' 1 !
1 ¥ T 1
' 0.500 ! 32,7094 ! 1 :
L] ] ] [
: 0.750 ! 31.4628 ! 1 !
T ] L 1
‘ 1.000 ! 30,4543 ! 1 i

* at t = 1 second or vt = 32.5949
. d2 :
notations:

G = Density Gradient of Fluid

¥ = Particle Displacement

d = Particle Diameter

Y = Particle Velocity

¥r # Terminal Fall Velocity Based
on Density of Fluid at &

t = Time

-y = Kinematic Viscosity of Fluid
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and 1.0 slug/ft4 is about five particle diameters at

the end of the first second. For the case of particle
specific gravity of 1.17, the results are din contrast

to the previous case. Figure 9 shows the time history

of the particle motion with different density gradients
for particle specific gravity of 1.17. The difference

in displacements between density gradients of 0.01
s]ug/ft4 and 1.0 slug/ft? is significant. At low density
gradients, the particle motions behave similar to the
previous case. However, at high density gradients,

the diversion is big. The density of the fluid increases
rapidly as the depth increases. The densities of fluid
at deeper levels are aimost equal to the particle
density. Therefore, the solid particle behaves like

a neutral buoyant particle. The total displacement -
tends to remain to be constant., In other words, the
particle starts at zero velocity at the free surface

and accelerates a little bit to gain some velocity.

Then, the particle tends to slow down‘and finally stay

at certain elevatjon. At that level, the particle
velocity is about equal to zero and the particle density
is equal to the ambient fluid density. This is indicated
by the lowest curve in Figure 9. The density gradient
for this curve is unity. The curve approaches to
horizontal line as time goes to infinite. The terminal

position of the partic1é can be determined from the figure.
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The same tendency is also found for other curves with
density gradients of 0.25 slug/ft* and 0.5 slug/ft?
since the fluid media under consideration is an infin-
itive body and the linear density gradient is postulated
without any boundary condition at the bottom of the
fluid. In natural water body with thermocline, the
thickness of the thermecline is finite. The fluid
density at the bottom of this layer is egual to the
uniform density in the hypolimnion. Hence, the
phenomena just described are not very common except
that the particle may stay inside the thermocline
if jts density is almost equal to the ambient fluid
density.

Typical experimental results are shown in Figure
10, 11, 12 for density gradients of 0O, 0.036 s]ug/ft4
and 0.072 slug/ft4 respectively. Thg dots are ex-
perimental data. The solid line 15 the theoretical
result. The case of zero density gradient means the
homogeneous fluid. It is presented here for the purpose
of comparison with other cases having the density
gradients, 1t can be seen from these figures that
the agreements between the theoretical analysis and the
experimental data are quite good. A few scattering
of data is shown at the beginning the motion. This is
probably due to the side swing of the particle as it

falls down. The small latteral! movement is caused by
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FIGURE 10- Particle Displacements in Homogeneous Fluid
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the rotation of the particle. In general, extremly
carefyl releasing of the particle must be made in
order to keep the straight downward movement of the
particle, Particle motidns in an environment of

high density gradients were not investigated experimen-
tally due to the great amount of salt involved

To create high density gradients in the laboratory

is not very realistic as far as the simulation of
density stratification in natural water body is
concerned. However, the resu]té from the theoretical
analysis will be able to predict the particle motion

in such a condition,
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CONCLUSIONS

As the result of this study, the following conclu-

sions are made.

1-

3-

The eguations governing the particle
motion in a viscous fluid of homogeneous
density can be applied to the density
stratified fluid if the density stratified
fluid body is considered to be composed .
of infinite homogeneous layers of finite
thickness. The results of theoretical
analysis have good agreements with the
exnerimental data.

The particle motion due to gravity in

a linear density stratified fluid is a
function of fluid density gradient. For

a particle of given density and diameter,
the motion is getting slower with the
increase of the fluid density gradient

if their surface fluid densities are the
same. The particle velocity aiso decreases
with the increasing fluid depth due to the
fluid density increase for a given fluid
density gradient beyond the zone of initial
accelerated motion.

For high particle-fluid density ratios,
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the effect of fluid density gradient an
the particle motion is not appreciable.
For smaller ratios of greater than one,
the effect is very pronounced.

For the particle-fluid density ratics
almost equal to one, the particle will
stay at a certain elevation as a neutral
buoyant particle whose density is equal

to the ambient fluid density, The termimal
position can be determined.

There is no terminal fall velogity for
paFtic]e motion in stratified fluid as can
‘be defined like the case of homogeneoos
fluid., However, a quasi terminal fall
velocity can be defined based on local

ambient fluid density.
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CHAPTER VII- APPENDIX I- NOTATIONS

The following symbols are used in the report:

erf
erfc

fn

—

{(v(t)}

ms

cross-sectional *area of tank

coefficients, see Eqs. (2-8), (2-13},
{2-15), (2-17)

coafficients, see Egs. (2-8), (2-15)

draqg coefficient

salt concentration (Co for initial concentration)
particle diameter

base of natural logarithms

error function-

cﬁmplementary error function

function, see Eq. (2-22)

density gradient

acceleration due to gravity

function, see Eq. (2-23)

water depth in tank

depth measured from the top of the thermocline
imaginary unit‘FT or an integer in a series
correction coefficient of the Stokes drag
proportional constant

Laplace transformation of Y(t)

mass of fluid displaced by the particle
particle mass

an integer in a series

discharge of salt water
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partié1e Reynolds number

parameter used in the Laplace transform
time

volume

particle velocity

particle terminal fall velocity

real part of the complex number

"total depth of the test tank or the thickness

of the thermocline

imaginary part of the complex number, also
a dummy variable

particle displacement measured from the
free surface '

density of the particle
density of fresh water

density of fluid (fo-for density at the
bottom of the test tank)

error
dynamic viscosity of the fluid
kinematic viscosity of the fluid

dummy variable



il

N3
N4
~08
06
a7
~0P
"09
N
£11
212
13
T4
EBE
16
o7
13
U

s

vay

LETS
37
'\1,_3

~34a

0

4l

R

41

LV A

17
163
R4

nhk

C

15

APPENDIX I1f- COMPUTER PROGRAM

ACCELFERATEN ¥NTICN OF A PARTICLE N & VISCOUS FLIID OF CHANGING

DIAEMSIIN TU1LOGO) Y {1LN00)

COMPLEX CMPLX,CEXP,CSORT

COMPLEY A R,7A+720,SUMAN, SUMBN SUMA,SUNMR,ARGAD? ,ARGR2,7CA,L0R
COMPLEY ARGALARGDL +2XYALERFLCA,ZXYR,EQRFC3,VS
DELT=0.001

N=1.0/796.0

RHAS=T,8%1.935 ”

PHOI=1,235

H=%,10)

YI5=0.102354

G=32,177256

PI=3.L4155

WERT=0.M

D18 1=1,1000

Yi1 Y=L oeno

T{l1=3,7N01

v iL)I=Nn/s2,

Tilh=0.001]

e 45 1=1.100%0

RO R L 0GR {Y L) —(0/211%1,9230

Al={TOEYsVIs) /Ne%?

DZ=0Yi1) i)

G AR TIVISIA I o2 { [FHOS/RHIIH L./ 20D
S RS/ eGSR HT R L /20 2)

=3, =TSl AR SAEHN I+ (1 /2 ))
(

Ye=AtMALEARSIRTITITIY) )
Xpv=4dEA {BESORTET LY
YR=AT#AGIMN=SLRTITILIIN)
SUMA=CARL X[ 0., )
SLEMRA=CHPEAI D e T2
DE35 w=l.10

k=0

TE €

=

FF\=2.*XA-2.$Yﬁ*CGSHIRN*YAJ*CDSI2.*XA#Y&]+NN#SImH{Qmﬁyﬂ}*S[N[2,$r=

1¥YA)

FGA=2.*Y&#CWSH(RN*Y&)*S{N(?.*KA*YAIfRN*SINH[RH*Vﬂl*CQ§l2.*KA*VAD;
FER=2, 5w , xXPRCOSHIAMNEYRIHCNS {2 =X REY 3+ NESTNH{RNHYR ) &SN {2 5X

23}

FOUZ? nXAECOGHRNSYRIESTINE 2 o AXBAY R+ RhEGTAHRMAY R XCAS {2 =X05YH )

AN AR FRALFGA)

7e=0PL X FERGEGR)

SLMas{{FYP{ =R 2 3/ ) 20 @nai2el{da s ({A=321)) 274
SUMA = {{FEYP | —{RMaxZ )/ 6,) AR St S ST (B A R L I B I R
SLIAL = SIAa e SUMA
SUMR=SUMBNE S

ARGAZ= (2 4 /P )EE NP {—XARS
ARGAR= (2 /A PTY2RC P =X 3%,
SAS ] a=C NS 2 2N AEYA)
NA=STH? . FXATYL}
70A=CMPLYESA,NA)

SPE=] o= S {2 o XHTYRY)

NP =S IN(2 ., 2XBTYR)
7CR=CHPLXISH DR

Iad i
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19 MALM AATFE = 721313 1R/37/

ARGATL={(EXP{-YA%=D2))/
ARGALI=[TEXPI=—XR&%2) )/
V1=0.0705230704

V=D 0422820123

V=N, 0092765272

Ve=0,C00015201473

VS=U. 002745572

VE=",0700430539

ePSI=3E=-7

[FIABSIXAI=3,)13,13,14 .

ERFXA=10— 010/ (Lo VIRXACV2E(XATE2 ) $VIRIXNARKRT) +VEH (X BERL) +VEH( XAZKY
A+WhHxe{ XAXKA)Y J I +EPS]T

G TO 18

BEMA=1.,

SUMAAL=— L./ (2en{ XAXED2] )

SUMAA2=w=1,./[2.%( XAa%%2))

RMAZOMA+]T,

SLAAAL=SUHMAAL ({2 %¥PMA-T L) /{2 % {XAXx2 )= (-1,

SUMAAZ=S51MAAZ+S5UMAA1 ¥

[FA{3MA~1Da1 1010417 5

ERFXA=S L.~ (1o AUSORTIPT Y XA XL FAP [ XAS=2 )1 )Yl o +SUMAAR)

FXYA=CHMOEXT XA, YA)

FlECA=Tl o= (la/lla={E=15) N1 2{ENFYXA-BRGCAL+AGA2)

[TFUASSEFR)=2,.015417, 7] _

FEFLA= L= () o AL #VISARHYIH AR ) Y2 XASHR) 4VLEEXRTRL) $Y 50 [ (3e%4)
R VLR ELE S I I S SR AN |

G0 T 24

PHOz].

SUMAB L=~ ] o/ {2, %{ XR&¥%21))

SUMA3Z=—] /12 %[XI3%%2]))

Ral=sie ),

SUNARTI=SUHARYI# L [ 2, %Reibh=1, ) /{2 % { XHEx=2) )18 (=-1.)

SUMABP=SUHARZ+SUMAR]

TEEUME=-1D.) 22022423

FrFXA=le=(1l/1SORTIPIIEXNE{EARP{ XBx%2})))%{]1.+SUMAB?)

ZAYA=SCMPLAL XY, Y3}

EEFCR=1.—0(1./(1.={F=146}))*{ERFXN—-ARGE1+ARGHE2)

VES=(LIAHOS/RIO) =L Y20/ {{RHUOS/RBUI 4+ Lo /2 P50 La FLARR YIS LA {A=(A=
SGYYRCEXP{ [Ax%21=T 1)) #ERFCA—( L/ (3% (A=DB) ) Y *CEXAPL [ B¥=2)=T{ [} }#FRFCA}

VSEIsSRFALIVS)

RVSEI=vSRI/VT

WRITE(G6+40) TOL}oYI1 ) VT4RVSRIWPLsP2,REYND

FORMAT{TFl4.4}

Gu TN 27

RA=C+{ 1. 5/D1%5RT(HL=-H2)

RE=C—(1.5/0 *SCRAT{HLI=-H2Z)

VSRl LIRHDS/RE =11 %G/ AHGS/RHEO)+ 1. /2.
ORA=RAIII=EXP{{B A2 T ()Y *ERFC(RARSORTIV
TY¥P(RBue? )2 T{ I} I=ERFCLRDESHURTITLIIIN)

RVSRT=v83rsvT

VERT=VSR

WEITE(S50) TIT oYL T VT e RVSRIANPL P2 2EYND

FURAAT{TFLl4 .4)

TOI+II=T{1}+0FLT

YUI#LI=Y DY+ SRTI=DFLT

TFIY LTI+ =) a8, 45,585

COMTIHUF

CALL FXIT

(PatPIXXA))%7CA
(2.5PT%XR))%2Ca

]"‘z(t].-/{p.'\*!?ﬂ]]{-(]_./(pn*_,
{]}}‘JII-IIQR%‘:[P.’.-};-J:]']_-;-



