Comparative Study of the Benthic Microbial Biota in Some Coastal Areas of Puerto Rico

Ьу

Eduardo Angel, M.Sc., M. D.
Principal Investigator

to

Water Resources Research Institute
Research Center
University of Puerto Rico
Mayaguez, P. R.

December 1972

"The work upon which this publication is based was supported in part by funds provided by the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379."

TABLE OF CONTENTS

32		# 9.FEG.		Page
				A.
Acknowledgements				1
Abstracts	·······		*******	iī
Introduction				1
Discussion				6
Reagents	*********			25
Bacteriologica	i Method Gran	Negative Baccili		25
Gram Positive	Cocci Marine	Micrococci		32
		nation Material,		41
Conclusions				110
References				111
Electron Microphoto Benthos of Tropical S	graphs Strains I: Seas	solated from the		116
Q I	LIST OF	MA PS		
I. Tallaboa Bay,Sta	tion Location .			121
2. Bahta de Mayagi	uez,Station Loc	ation		122
3 Rincán Coast Si	tation Location			123

LIST OF TABLES

<u>Table</u>		Page
1-9	Chemical and Physical Determinations of the Sea Water at the Bottom-Tailaboa Bay	46
10-32	Biochemical and Morphological Characteristics of Gram Negative Bacilli at Tallaboa Bay	55
33-41	Biochemical and Morphological Characteristics of Gram Positive Micrococci at Tallaboa Bay	78
41-A	Comparative Percentage Distribution of Characteristics Among 205 Cultures of Micrococci Isolated from the North Sea and 155 Strains Isolated from the Benthos in the Caribbean Sea	88
42-44	Chemical and Physical Determinations of the Sea Water at the Bottom-Mayaguez Bay	89
45-56	Biochemical and Morphological Characteristics of Gram Negative Bacilli at Mayaguez Bay	92
57	Chemical and Physical Determinations of the Sea Water at the Bottom-Rincón Coast	i 04
58-59	Biochemical and Morphological Characteristics of Gram Negative Bacilli at Rincon Coast	105
60	Grouping of Some Heterotrophic Bacteria Found in Coastal Areas of Puerto Rico	107
61	Comparison of Some Determinative Test for Gram- Negative Bacteria Isolated from Tropical Seas and Gram-Negative Bacteria Isolated from Temperate Seas	10 8
62	Isolated Culture, Gram Negative Bacilli	109

Part of this work has been presented at the IV Latinamerican
Congress of Microbiology, Punta del Este, Uruguay, December 1971;
the remaining portion shall be presented at the I International
Congress of Bacteriology to take place in Jerusalem, Israel,
September 1973.

ACKNOWLEDGMENTS

Through this means I would like to gratefuly acknowledge the valuable help and services rendered by: Dr. Ernesto Colon Yordan, Secretary of Health and Dr. Angel A. Colon, former Assistant Secretary for Environmental Health and Consumer Protection, for allowing me to complete this work; Dr. Antonio Santiago Vázquez, Secretary of Public Works and former Director of the W. R. R. I., for his encouragement at the outstart of this undertaking; Dr. José A. Ramos, Director of the Graduate School, University of Puerto Rico at Mayaguez, for suggesting the problem which led to this work; Dr. Virgilio Biaggi, Chairman of the Biology Department, University of Puerto Rico, at Mayaguez, for the responsible execution of his administrative duties which greatly facilitated the experimental labor; Dr. Frank Lowman, Director of the Biology Division of P. R. N. C. at Mayaguez, for facilitating his navigational equipment, laboratory equipment and personnel who voluntarily offered their services; Ernesto F. Colon, Professor of Engineering and former Director of W. R. R. I., for his unending stimulus and understanding; Lolita Lugo de Danielsen, Head of the Bacteriology Section of the Institute of Health Laboratories, Department of Health, San Juan, Puerto Rico, for her extraordinary and highly specialized technical assistance, without whose help this work would have been impossible to complete; Dr. James Sanabia, Head, Chemistry Division of the Institute of Health Laboratories, Departament of Health, San Juan, for the edition of this work.

And to all those who in one way or another contributed in a large or samll fashion on a professional or personal level.

I - ABSTRACT

In this work we have chosen two large groups of bacteria: one the gram-positive, non spore-forming, unicellular eubacteria known as the lactic acid bacteria since they are able to synthesize only a few of the building blocks necessary for growth, and accordingly must be supplied with large numbers of organic compounds by the environment. The lactic acid bacteria include both rod-shaped organisms and cocci; the latter with its marked tendency to appear in bunches and short chains, has been the group studied in this work, following the papers of Baird-Parker (1) and with the modifications introduced by Desnues et al. (2) in addition to the recommendations from the subcommittee on taxonomy of Staphylococcus and Micrococcus (3).

The other main group is the aerobic pseudomonadaceae. They are gram-negative, polar flagellated rods (4) whose only energy metabolism is the respiration of organic compounds. Several aerobic pseudomonads can carry on anaerobic respiration using nitrate as the terminal hydrogen acceptor. Most of these organisms can synthesize all the compounds necessary for growth from a single organic compound, almost the opposite of the general characteristics of the previously described lactic forming group.

The pseudomonads as a whole can utilize an extremely wide range of carbon compounds. Such chemically diverse compounds as alcohol, amines, aliphatic, and aromatic carboxylic acids, sugar and hydrocarbons can serve as substrates for one or more pseudomonads. On the other hand, certain pseudomonads can grow on a very restricted number of compounds. Because of the very large number of carbon compounds they can oxidize, the pseudomonads are one of the most important links in the cycle of carbon in nature.

All determinations were made following in part the scheme devised by Simidu and Aiso (5) and the schemes of Bonde (6) Shewan et al (7) and the general description of grouping published by Quigley and Colwell (8).

The distinction between pseudomonads and achromobacter were achieved by using the Hugh and Leifson test (9), the motility test (10), the flagellar Stain (11) (12), or the electron microscope (Hitachi-Perkin Elmer
Hu II). The regular occurrence of Achromobacter cells in pairs has often been utilized as an important determinative characteristic of the group (13), and although single cells are observed by light and electron microscope the predominant cell arrangement are pairs.

If peritrichous pseudomonads were found, the differentiation with Achromobacter was made following the scheme of King (14); if differentiation from Enterobacteriaceae was necessary, the scheme of Ewing (15) was followed and if Vibrio was suspected, either gram-stain (16), flagellar stain (12, 14), electron microscopy or the use of penicillin, terramycin and 0/129, as proposed by Shewan and Hodgkiss, were performed (17); to differenciate Pseudomonadaceae, Achromobacter and Bacteriaceae, the Shewan and Kodgkiss scheme was followed, op. cit.

The enhancement of pigment production was obtained by the Paton's media (18) and the oxidase reaction was made following the recommendations of Kovacs (19).

The use of "aged" sea water (20) media in these experiments represented respect for the environmental source from which these organisms were isolated. Not all strains could be grown on media prepared with ordinary distilled water. This would indicate that these group of organisms were highly adapted to their marine environment and considered to be

true marine forms (21, 22).

Rincon coast presents an area where Pseudomonas group III predominates.

In Mayaguez bay no Pseudomonas group I could be isolated. No Vibrios were identified at any station sampled.

Tallaboa bay presents two special characteristics, one is that there are several stations where only one species could be isolated. The other and perhaps the most important is that an ample flora of micrococcus grew in several stations in sharp contrast with Mayaguez bay and Rincon coast where no gram positive cocci could be isolated.

Several physiological characteristics of both the gram negative and gram positive micrococci isolated are quite different from the biochemical and physiological characteristics reported by researchers that sample from temperate seas.

Due to the fast development of industry in Puerto Rico with its consequently coastal localization and increased energy demand, it is urgent to continue the study of the characteristics of the coastal areas, mainly in relation with the bacterial ecology about which there is a general lack of knowledge of its function and importance as the first link in the fundamental biological energy conversion chain.

II - INTRODUCTION

During recent years, the use of marine outfalls for the disposal of sanitary and industrial waste have greately increased.

It has been found that those benthic organisms which are sessile or which move only relative short distances, give the most accurate indication of the condition of the water over a period of time. Therefore information regarding the bacterial flora on the sea bottom has assumed a great significance, since plankton and chemical analysis give only the conditions of the water at the time of sampling.

Bacteria which enter the oceans by way of land drainage and sewage out falls, die quickly (23). Apparently the benthic bacterial flora is much more stable as source of information about the environmental pressures exerted, if any, by the discharges that come from domestic, industrial or natural stream flows.

In the current study we have investigated the contribution of the indigenous marine bacterial microflora in polluted areas such as Mayaguez bay, in which raw sewage is discharged (24); Tallaboa bay, where the outlets of cooling water, mixed with other substances, from a big petrochemical complex are discharged (25), and a third area such as Rincon coast, where there is no known major source of animal or chemical discharge of pollutants.

Some chemical determinations were made in the water samples in order to relate which were the characteristics of the aquatic environment near which the bacterial isolates lived. Bacterial ecology has one very large handicap compared to the ecology of macroorganisms: the minute size of the environment of a microbe. The environment of any organisms is of the

only a few cubic microns in extent. This means that it is very difficult to describe accurately the environment of a bacterium in nature (26). This handicap to the study of bacterial ecology is counter balanced by the relative ease with which we can determine the bacteria that are best adapted to particular environment. A given environment is chosen and inoculated with many kinds of bacteria (a bit of sea bottom core, for example) and the form best adapted to the environment will come to the fore and without much difficulty can be isolated and studied.

We chose to determine part of the benthic bacterial flora by using in this case the pseudomonadaceae and the micrococacceae, because the effects of the settled sludge upon that flora are and can be more readily noted.

If changing conditions, such as pollution, are unfavorable, organisms must resist these changes, migrate or be destroyed. But if conditions are favorable for certain organisms, these will thrive and build up their populations. For this reason, the society of organisms found is zones of pollution is highly significant. It offers clues to the intensity of pollution and the degree of recovery.

As such, a study of the pseudomonadaceae and the micrococaceae was undertaken in an attempt to evaluate the degree of pollution of the sediment and thereby relate this with other ecological phenomena potentially affecting the bottom community life rather than being able to measure the net physical-chemical effects of the sludge upon the surroundings waters.

Biological indicators, as part of the species compositions of the aquatic environment, are determined by the condition in a given area,

and can indicate past environmental conditions. Single species however do not possess a high index value. Tarzwell and Col have concluded that it is the qualitative and the quantitative compositions of the population which is of importance in denoting pollutional conditions (27). Thus the presence and possible variation of certain species of bacteria, used as indicators, should be determined.

Studies on the whole microbial ecology of the benthos involve difficulties of taxonomic and technical nature. A study of the whole microbial ecology is interesting and necessary, but due to the lack of time and
resources we were obliged to limit this work to a few species that can be
grown, compared and identified at the same time. This can be achieved by
studying the Pseudomonadaceae and Micrococcaceae group, where the combined
taxonomic and special growth requirements, if any, can be partially overcome.

There are problems like the partial identification of members not of one taxonomic group but of several different, not always closely related groups, that will cause trouble and confusion in the estimation of the indigenous benthic bacterial flora present at a certain moment in selected areas of tropical seas supossedly affected by chemical or sanitary discharges.

For those reasons, and also because there is not enough data available yet to give us a scientific account of the benthic bacteria in tropical seas, the authors have emphasized its search for two groups not only well known to be common inhabitants of the benthos in northern seas, but about which its biological, physiological and mayor taxonomic characteristics are known.

The equally interesting question of the presence of virus or yeast in the benthos will not be entered into in this report. The reader is referred to papers that will be published elsewhere. The difference between laboratory and field conditions was stressed already by Nusbaum and Garver (28) and the authors do not pretend to simulate natural conditions in any of their results, except that the cores obtained by sampling were kept undisturbed as much as possible through the time these studies were performed.

In most cases we have used standard bacteriological methods. However a few procedures have been modified to facilitate the studies on bacterial physiology or biochemistry.

We are aware that innumerable interrelated factors such as salinity, nutrients, hydrogen sulfide, climate (temperature, storms, ilumination) depth of waters, distance from the shore, currents, and the production and the composition of plants and animal material cause an uneven micro and macro zonal distribution of benthic bacteria.

Nevertheless we have tried to isolate and identify bacterial strains already well known and isolated previously from other seas (7) mainly from northern seas. We did not attempt to determine the viable bacterial population and it should be noted that except for the publications of Gastelvi (29) there are no published works known to us with the characterization of the marine benthic bacterial biota in tropical seas.

Bacteria play essential roles in the cycles of all the biologically important elements, namely: carbon, oxygen, nitrogen and sulfur. In the oxygen and carbon cycle its esential role is to return the carbon dioxide to the atmosphere. Of course much of the carbon goes to form bacteria

themselves, but this carbon too is eventually released.

In the nitrogen cycle, nitrogen is lost by the action of denitrifying bacteria and also when plants are harvested and removed from the ground on which they grew. Both these losses are made up by nitrogen fixation. A number of microorganisms are responsible, mainly the symbiotic nitrogen fixing bacteria. In tropical areas, the blue green algae are probably responsible for a lot of the nitrogen fixation.

Finally, the sulfur cycle is probably not so critical as the nitrogen cycle, but the interconversions made by a large number of microorganisms are also of considerable chemical importance.

— III - DISCUSSION

We have been concerned in our laboratory with the distribution of the benthic Gram negative bacilli and Gram positive micrococci flora from three different areas in tropical seas. We believe they are representative of part of the marine microbiota at the moment of sampling and at the sites sampled since it has been clearly demostrated (30) that the elimination of non-marine organisms in the sea is directly related to the size of the marine microbial population. In the deep sea, where the microorganisms, are sparse there is a minimal effect on non-marine microorganisms, however, water sampled from coastal zones had a strong killing effect.

Our samples were taken from coastal zones except that we dealt only with benthic communities.

Also the microorganisms which are foreign to the marine environment, carried into the sea in sewage and in surface drainage waters, rapidly dissappear in the sea. Hypotheses proposed to account for this decline include dilution by ocean currents (31), physicochemical factors (32), and toxic products of marine microorganisms (33).

We do not pretend to present our bacteriological findings as indicator organisms. The "state of the art" today is such that sorting and enumeration of indicator organisms is, even for the expert, extremely time consuming. For many areas, check lists are not available and we were confronted with the difficult task of developing our own reference sources. This problem must be alleviated by developing adequate bacterial identification lists. Until this has been accomplished, the use of bacteria as indicator organisms can not be exploited to its full potential.

The chemical analysis are relatively limited first, because that was not the main purpose of this study and second, because in general, we believe that organisms by themselves, reveal more about water quality than the chemical analysis. This is specially true when the area being invesgated is under direct influence of an identifiable waste stream. Even the most specific chemical analysis can do no more than indicate conditions existent at the time of the sampling. On the other hand organisms that spend the majority of their life cycle in the area under investigation represent conditions that have prevailed at least over the past months.

So far we only dealt with two main types of marine bacteria, which aside from the argument over definition, presented to us, as to most workers in marine microbiology, great difficulties in identifying the isolates, regardless of which determinative keys were used. Whether the differences and difficulties are real or not have resulted in the publication of quite different determinative keys. Moreover, except for the short mention of Castelvi (29) there is no published work known to us in relation to the taxonomic study of benthic marine tropical microbial flora. Therefore we followed the identification to the generic level, following the determinative keys prepared for Gram negative bacteria isolated from water samples in temperate seas.

As for micrococci, with a very few exceptions (1, 2, 3, 8) there is a general lack of detailed work on taxonomy of benthic micrococci. Further identification to the species level is an intractable problem, in which the statistical approach is likely to lead to some worthwhile results (34).

Bottom cores were taken with a Gemware Phleger Gravity Corer with a

weight of 55 lbs., plastic liners and bronze core catchers. The cores were put immediately in dry ice (35) and kept frozen until used for bacteriological plating.

Water samples were taken from the bottom at the same stations where benthic cores were obtained. Several determinations were made "in situ" and several were performed at our laboratory in an intent to gather some basic general knowledge of the prevailing physical and chemical environmental conditions at the different sampling sites. Since no data, known to us, has yet been published in relation to the characteristics of the water at the bottom in coastal areas of tropical seas such as Puerto Rico's west and south coasts, no comparison could be done to check the validity of our results.

The superficial current direction was studied by using green fluorescein powdered stain (U. S. Navy surplus) and the sampling station distribution followed the pattern of the general sweeping of the currents.

We fully realized that when testing a solid or semisolid such as muds, broken dead corals or sediments, the problem of sampling error is large. Lyn and Yound (36) showed that there exists a considerable amount of error in using a sampling technique very similar to ours, pointing out that the major errors occur with samples containing larger solids than anticipated. The total problem of sampling is complex when consideration is given to the potencial sampling errors and the conclusions to be drawn from the results of the samples examined. It would be unwise to seek precision with less than 5% variation, when core samples might reflect 100% to 200% variation when taken distances 5 feet apart. Nevertheless, since there were no better methods for sampling but experimental ones, we decided

to use the one that had been statistically analysed and its drawbacks well known.

Also, quantitative sampling for microorganisms present very difficult problems. The situation becomes acute because if the samples are not properly quantitized the value of the data proportionally decreases. Unfortunately extensive sampling is time and money consuming and as sometime happens, the pressure of the problem can not await its completions. One way to solve this dilemma (37) is to select a control area which is completely or nearly free of the substances or substances which affect the area or areas under study. That was the reason why we have included Rincon Coast in our studies.

Three areas were chosen in order to compare which, if any, would be the main differential characteristics of the benthic bacterial flora when generally compared with each other.

Area one (see map Rincon Coast) was Rincon Coast. This is a low sandy coast with an approximate length of 5 miles, which extends from north to south at the western part of the island and is located approximately seven miles north of Mayaguez bay.

The superficial sea currents run continuously northward at a speed of 0.4 - 0.6 knots /hour, corresponding generally with the deep currents (38). There are no major sources of pollution and the experimental nuclear thermoelectric plant located at the northern edge of the area at Punta Higuera closed its operation eight months before our studies began. The sea bottom is sandy and rocky, no sludge deposited or recovered in any sample, its continental shelf being very narrow and its continental slope becoming very steep not far from the coastal line.

The second area chosen was Mayaguez bay (see map Mayaguez bay). It is a bay located about halfway along the 34 mile stretch of the west coast between Cabo Rojo and Punta Borinquen. It is an ample bay that extends from Punta Cadena to Punta Guanajibo with an approximate length of five miles. Pollutants enter Mayaguez bay from four main sources (24, 25): Yaguez river, untreated sewage from Mayaguez Municipal Sewage system outfall, located 926 meters from the shore southwest of the Yaguez river mouth, wastes from tuna canneries and Guanajibo river outflow; also (25) direct discharges of sewage and garbage into the sea from homes, restaurants and gasoline stations located along its shore. The currents prevailing in the bay have a velocity of about 1 knot /hr. and sets northward and southward across the entrance to the bay. Farther out from shore a northerly current has been observed to prevail (25). A large superficial swirling was observed at the sewage discharge outlet.

The third area chosen was Tallaboa bay (see map Tallaboa bay). It is an open bay located on the southern coast next to Guayanilla bay. The area under study extended from the eastern margin of the CORCO petrochemical complex to Punta Guayanilla, approximately five miles west. Tallaboa bay is a generally shallow, open bay somewhat protected by small mangrove islands and coral reefs, its waters are turbid and it has muddy bottom sediments. Its superficial current pattern, as measured by us, is mainly westward during the day at a speed of 0.5 knots /hour. Being the tidal range of this bays only 35 cm, the wind force will be more stronger than the tidal force (25). Since the waste discharge to the bay waters is generally of a lower density than sea water, the contaminants will follow the general pattern of the superficial currents.

Our findings in relation with speed and current direction are in agreement with those found by other investigators (38).

The great share of pollution entering the bay comes from the industrial discharges of the Commonwealth Oil Refining Co. and Union Carbide Caribe which, besides discharging 80,000 gallons/minute of hot water from cooling and condensing operations, have a combined BOD output equivalent, in terms of population, to the domestic wastes discharged by a city of 540,000 inhabitants (39).

Sixteen stations were located at Tallaboa bay and named from east to west 1, 1A, 1B, 1C; 2, 2A, 2B, 2C; 3, 3A, 3B, 3C; 4, 4A, 4B, 4C, respectively each station producing bottom cores for bacteriological isolation and water samples for chemical and physical determinations.

The physical and chemical conditions in Tallaboa bay were such that stations 1B, 2A, 2C, 3, 3A, 3B, 3C, 4 showed one or more occasions a content of DO lower than 4.5 p.p.m., this figure being chosen as a point of reference because at the time of sampling that was the lowest DO permitted by law for superficial marine waters used for industrial purposes. The pH never exceded 8.40, the maximum authorized by law at that time and for superficial industrial marine water being 6.7 to 8.7. In general, there is a marked tendency towards the alkaline level and extreme ranges fluctuating between 7.50 - 8.40. (see tables 1, 2, 3)

Carbonates and carbon dioxide content oscillated between 2.26 meq/l to 1.45 meq/l for the former and 2.32 meq/l to 1.34 meq/l for the latter. They represent the major buffer against which acid and alkali from any source can act. (see tables 4, 5, 6)

The temperature of the water at the bottom never extended beyond the

26°C - 31.5°C range, the salinity varied only from 36.404 S%o - 30.910 S%o and the chlorinity between 20.09 - 17.48 at 20°C.

Determination of phosphate as PO4 - P/1, hitrates and phenol wastes
were made with negative results for the presence of phenols and a maximum
of 0.75 mq/1 for nitrate and .20mq/1 for phosphate. (see tables 7, 8, 9)

The Gram negative bacteria showed that Pseudomonas sp. group I was isolated only from station 1A (see table 12); Pseudomonas sp. group II was isolated only from sample 1 of station 1B, named 1B-1 because there was a second sample taken at that point (see table No. 15); Pseudomonas group III were isolated only from sample 1-1 of station 1 and from station 1A; Pseudomonas group IV was isolated from samples of the station 1, 1A, 1B. 1C, it is worthwhile to note it was the only group that could be recovered at stations 1B, and 1C (see tables 14, 16). No Flavobacteria sp. Vibrio sp. or Enterobacter-Coliform group was isolated from any of the 1, 1A, 1B, 1C stations which are located just above the eastern margin of the petrochemical outlet (see map Tallaboa bay station location). As for stations 2, 2A, 2B, 2C, located westward beyond the petrochemical outlet, it was possible to isolate Pseudomonas sp. group I and Pseudomonas group II from stations 2 and 2A; Pseudomonas group III from stations 2B and 2C and Pseudomonas group IV from stations 2A and 2C; no other species of gram negative aerobic bacilli grew out of the core samples from this stations (see tables 17, 18, 19, 20). It is remarkable that no gram negative bacterial sp. were obtained from a second sample taken at station 2C (see table 21).

From the core samples obtained along the transect named 3, 3A, 3B-1, 3B-2, 3B-3, 3C-1, 3C-2, the following species of Pseudomonas and Gram

negative aerobic bacilli were isolated: Pseudomonas group I were isolated from stations 3, 3B-1, 3B-3, 3C-1; Pseudomonas group II were isolated from samples 3, 3B-3, 3C-2. Pseudomonas group III was found in stations 3, 3B-3, 3C-1, 3C-2. Pseudomonas group IV was isolated from stations 3, 3B-1, 3C-2. Sample 3A taken from station 3 only produced Flavobacteria sp. and only Vibrio sp. grew out of sample 3B-2 taken at station 3B. Aerobacter sp. and Paracolon group were identified from samples of stations 3, 3B, 3C. There is a tendency in this group to harbor Vibrio sp. whereas none were isolated from samples taken at stations 2 to 2C.

The Gram negative sp. isolated from stations 4 to 4C are as follows:

Pseudomonas group I were absent from all the samples obtained the same as

Pseudomonas group IV and Pseudomonas group II which were not isolated from
any station. Pseudomonas group III was isolated from samples of stations

4 and 4C. Only Flavobacterium sp. were isolated from station 4A and Vibrio
sp. was the only isolate obtained from samples of the station 4B; it was
isolated also from station 4C as well as Aerobacter sp. which were present
in samples taken at station 4 and 4C.

In relation to the Micrococcaceae (40) we used anaerobic and aerobic metabolism of glucose in order to differentiate between genus Micrococcus and Staphylococcus (2). 24 test were used including mannitol and maltose, arabinose, glactose and xylose aerobic and anaerobic metabolism; sodium requirement by growth in EM broth and not in peptone broth; hemolysin production, lypolitic activity, coagulase production and the activity on casein. No work, known to us, has reported the results of the biochemical activity on blood and the production of coagulase from gram positive cocci isolated from the benthos, least in specimens taken from tropical seas.

This is true also in relation to the testing of sodium requirements for growth by studying growth in peptone medium with or without aged sea water (20). For more details see materials and methods.

None, out of seventeen strains under study, were able to grow in a simple nitrogen medium. None required high sodium concentration to grow and all were producing an orange pigment. All were able to hydrolyze casein and none were able to metabolize out of the twenty three were able to grow on a simple nitrogen medium and nine required high sodium concentration to grow in peptone or in any other medium. All of them were pigmented, although none were able to produce acid either aerobic or anaerobically from glucose, all were able to hydrolizate casein and none had any action on blood or were able to produce coagulase (see table 34).

Twenty three strains were isolated and studied from the sample taken at station 1B, Tallaboa bay. All of them were oxidaze and catalaze producers. All were able to metabolize glucose fermentatively, and produce acid from mannitol and maltose. They all grew in BM medium without sea water and all colonies produced a yellowish pigment. None had any action on blood or lypolitic activity (see table 35).

At station No. 2 twenty one strains were isolated and studied. One out of the twenty, one was able to metabolize glucose fermentatively and it produced acid from mannitol and maltose. Only three did not require high sodium concentration to grow and they were all able to hydrolyze casein (see table 36).

Twenty-three strains were isolated from station 2A, Tallaboa bay.

All were oxidase and catalase producers. All metabolized glucose

aerobically and produced acid from mannitol, maltose and arabinose. Only two required a high sodium concentration to grow and twelve out of the colonies were either yellow pigment producers or orange pigmented and all were able to produce casein hydrolitic enzymens (see table 37).

It was possible to isolate four strains from the sample taken at station 2B, Tallaboa bay. Three had the ability to metabolize glucose fermentatively as well as mannitol and maltose. None required a high sodium concentration to grow, one was yellowish and the other three were orange pigment producers (see table 38).

At station 3, Tallaboa bay, twelve strains were isolated. Six were able to metabolize glucose fermentatively as well as mannitol, maltose and arabinose. None required a high sodium concentration to grow and they were all orange pigment producers. None had any effect on blood, lypolitic activity, coagulase production and none were able to hydrolyze casein.

None were able to grow in simple nitrogen medium (see table 39).

Twenty strains were isolated from station 3A, Tallaboa bay. All of them were oxidase and catalase producers. All grew in simple nitrogen medium and none required high sodium concentration to grow. All metabolized glucose fermentatively as well as mannitol. Acid was produced from maltose and xylose by oxidative pathways. All were able to reduce nitrates to nitrites and all produced a magenta pigment. None had any activity on blood, produced coagulase or had any lypolitic activity; none was able to produce coagulase and none hydrolyzed casein (see table 40).

From the sample taken at station 3B, Tallaboa bay, fourteen strains were isolated. All were oxidase and catalase producers and none were able to grow in a simple nitrogen medium. No activity on the different carbo-

hydrates tested was shown and none required a high sodium concentration to grow. All colonies were orange pigmented and all were able to hydrolyze casein. None had any activity on blood, produced coagulase, gelatinase, hydrolyze starch or had any lypolitic activity under the conditions tested (see table 41).

It is interesting to note here that it was not possible to isolate gram positive cocci from any other samples taken at any other station at Tallaboa bay.

As published in other reports (1) the formation of loose or compact clusters showed considerable variation on different media and tetrads were formed by many strains which otherwise grew as irregular clusters. We consequently decided not to consider the genus Sarcina until more biochemical and physiological data could be obtained from the strains under study because it would have been possible to confuse the true packet formers with some of the tetrad-forming micrococci. Following this consideration, those organisms which grew as tetrads were placed in the genus Micrococcus.

Also is interesting the fact that no Staphylococcus sp. was isolated from any of the samples taken.

The percentage distribution of characteristics among 155 cultures of micrococci isolated from the benthos in tropical seas differs sharply with the reports of other investigators who studied strains isolated from temperate seas (40). While Anderson found 97.5% out of his 205 isolates to be producers of acid from glucose, we found a 49% average. He found that 90% of his strains were fermentative in contrast with 100% in our findings. We were not able to isolate strains with oxidative activity on glucose.

He reported that 53% out of his 90% of fermentative were able to produce a clot in litmus milk while our isoltates were not. In the northern seas series 37% produced acid from mannitol; in our series 100% out of the 76 glucose fermenters produced acid from mannitol, 69.7% by an oxidative pathway and 30.3% by a fermentative one. None of the 76 glucose fermenters metabolized galactose while the isolates from the northern sea turned it acid or alkaline. 84.2% out of 76 isolates which were glucose fermenters, were able to hydrolize gelatine. The 15.8% gelatine negative were all 100% mannitol oxidative and none was able to produce lypolitic enzymes under the conditions tested; again in contrast with the findings of Anderson et al. from the temperate sea series. All gelatine negative strains from our isolates were also unable to show lypolitic activity and 33% did not grow in a simple nitrogen medium.

79 isolates, or 51%, from the total strains under study did not produce acid from glucose, neither produced a clot in litmus milk, nor showed lypolitic activity. None hydrolyzed gelatin and all (110%) hydrolyzed casein. Only 2 (2.6%) were able to grow in a simple nitrogen medium (For a summary of these results, see Table 41-A).

There were sixteen stations located at Mayaguez bay (See map Mayaguez bay station location). Station 1C,2C,3C and 4C were sampled for chemical and physical determinations only. All others were sampled for bacteriological isolation also. The DO concentration at the bottom was rather low, with readings of 2.5 ppm at the Yaguez river mouth and between 3.6 to 3.7 ppm following the transect of stations 1A, 1B, 1C, 2A, 2B, 2C. Although there were very few determinations made they do not differ from chemical and physical determinations made at superficial waters of the bay by several investigators, some reporting readings as low as 0.00 ppm in stations located very near the

with a low of 7.60 at the bottom, none exceeding the maximum a minimum permitted by law at that time. The total alkalinity expanded from a high of 2.13 meq/l to 1.57meq/l at the lowest determination. Total CO₂ and CO₃ showed variations from 1.87meq/l to 1.36meq/l for the former and 2.02 meq/l to 1.48meq/l for the latter. The temperature of the water at the bottom fluctuated between a high of 29°C to a low of 26°C. Salinity was recorded from 36.108 SZo to 30.620 SZo, all samples obtained as usual, from the bottom. Phosphates as mg PO₄-P/l were never higher than 0.75; phenols were negative and nitrates showed a maxima at 2.20 and a minima at 0.40 mg/l. (See tables No. 42, 43, 44)

No Pseudomonas group I were isolated from station I. Pseudomonas group II-III and IV grew out of this sample. Of the seven strains studied, two did not grow at a higher temperature (above 37°C) Five failed to grow in media with low concentrations of sodium and none exhibited pigment production. Three were sensitive to pencillin 2 u and four were sensitive to terramycin 10 mcg.; the absolute sodium requirement for growth not being reported in previous publications and the antibiotic sensity being in contrast with what has been previously stated. The same can be said for the effect of temperature on the inhibition of growth (5,7) (See Table 46).

At station IA, eight strains were studied. One was not possible to identify; one showed a glucose oxidative reaction, seven were flagellated, six failed to grow in media with low concentrations of sodium and one failed to grow at 37°C. No Vibrio sp., no Paracolon group was present in this specimen. They all belonged to Psedomonas group II-III-IV (see Table 47).

Eight strains were isolated from the core taken at station 1B, Mayaguez bay. All were motile, two split urea, four failed to grow in medium with low sodium concentration and the other four showed a very weak growth. All grew at 37°C and all were penicillin resistant. All were classified as group II - III and IV. One determined to be a Pseudomonas sp. for several reasons did not fit in the sequences known and was not classified (see table No. 48

Eight strains were isolated at station 2A. Six showed an oxidative metabolism of glucose, all were flagellated and two showed a weak urease production. Two failed to grow in low sodium concentrations and all grew well at 42°C. Two were sensitive to penicillin 2 u and five were sensitive to terramycin 10 mcg. All were classified as Pseudomonas II - III and IV (see table No. 49

Station 2B produced six strains of Gram negative motile bacilli which were all none pigmented. Three failed to split the urea and one doing so in a very weak fashion. Three did not grow in medium with low sodium concentrations and all grew well at 42°C. Three were sensitive to penicillin 2 u and four were sensitive to terramycin 10 mcg. All were classified as pseudomonas group II - III - or IV (see table No. 50

Eight strains were studied from station number 3. One was not motile and five fermented glucose, sucrose and mannitol with gas. Only one grew in Marine agar plus 30% skim milk and six failed to grow in medium with low sodium concentrations. One failed to grow at 37°C, two were penicillin sensitive and four were terramycin sensitive (10 mcg). They were classified as Pseudomonas group II - IV and Aerobacter sp. no Pseudomonas group I and III or Vibrio sp. was isolated from this sample (see table No. 57

Five out of the eight strains studied from station 3A, Mayaguez bay, fermented glucose with gas and sucrose without gas production. Only one showed urease production and seven failed to grow without high sodium concentration in the medium. All grew at 42°C and none was sensitive to Penicillin, Terramycin and 0/129. They were classified as Pseudomonas group II and IV and Aerobacter sp. (see table No. 52

From station 3B, eight strains were studied. All colonies were mucoid and motile; one render the media with carbohydrates alkaline, five failed to grow in media with low sodium concentrations and all, except two, were Penicillin 2 u, Terramycin 10 mcg and 0/129 resistant. All strains were classified either as Pseudomonas group II - III or IV or Aerobacter sp. (see table No. 53

From the eight strains studied from station 4, Mayaguez bay, it was found that all were motile exhibiting urease production, none growing in media with low sodium concentration; all grew at 25°C, 37°C and 42°C, three were penicillin resistant 2 u and terramycin resistant 10 mcg.

They were classified as Pseudomonas group IV (see table No. 54)

Four out of eight isolates studied from station 4A sample, fermented glucose and sucrose with the production of gas. Four failed to produce urease, three failed to grow in media with low sodium concentration, all grew at 25°C, 37°C and 42°C, two were penicillin resistant 2 u, and one was terramycin resistant 10 mcg. They were classified as Pseudomonas group II and III and four as Aerobacter sp. (see table No. 55

Station 4B, Mayaguez bay, showed eight strains under study. Three of them rendered glucose, lactose, sucrose and mannitol alkaline. None had urease, while seven failed to grow with low sodium concentration in

the media but all growing well at 25°C, 37°C and 42°C. Two were penicillin and one was terramycin resistant. All were classified either as Pseudomonas group II - III and IV (see table No. 56)

Rincon Coast water samples showed 5.7 p.p.m. of D.O., a pH of 8.20, a total alkalinity of 1.92, 26° temperature and a total CO₃ of 1.82 meq/l with CO₂ being 1.63 meq/l. No nitrates, phosphate or phenol were found. (see table 57)

Eight strains were isolated from station 1, Rincon Coast, six fermented glucose with gas production, one turned glucose, lactose and sucrose alkaline, one failed to grow in Marine agar plus 30% skim milk, was oxidase negative urease megative and was classified as Alkaligenes sp. Six were polarly flagellated, one was amphitrichous. All except two were penicillin resistant and one was terramycin resistant. All grew well at 25°C, 37°C and 45°C.

They were classified as Aeromonas sp. Alkaligenes sp. and one as Pseudomonas group III (see table No. 58).

Station two at Rincon Coast showed 8 strains under study whose characteristics were as follows: all were motile with polar flagella, two produced pigment and grew in Paton's media. They all failed to show urease activity, four failed to grow in media with a low sodium concentration and all grew well at 25°C, 37°C and 45°C. One was pennicillin sensitive 2 u and three were terramycin sensitive 10mcg. They were classified as Pseudomonas group I - II - IV (see table No. 59).

Table No. 60 shows the general Gram negative species distribution isolated by station and area. It is possible to see that on Rincon Coast station 1 Pseudomonas group III was the only isolate from the sample. Achromobacter-Alkaligenes sps. and Aerobacter sp. tended to predominate.

In station No. 2, the four groups of Pseudomonas were present.

Mayaguez bay presents the peculiar situation that no Pseudomonas type I could be isolated. There were Flavobacteria sp. in stations 1 and 2 and Aerobacter sp. in stations 3 and 4. There were no Vibrios sp. isolated either.

Tallaboa bay shows a rather more uniform picture in which all groups of Pseudomonas are present at one time or another; only in stations 4 to 4C Pseudomonas sp. group I and IV could not be isolated. Flavobacterium and aeromonas were present only in stations 3 to 3C and there was also a great abundance of Vibrio sp. as only Vibrio sp. could be isolated. This situation tended to duplicate in relation with other species isolated from various stations in Tallaboa bay as is the case of station 1-B where only Pseudomonas group IV was found, station 2-B where only Pseudomonas type III were isolated, although it is clear that the number of isolates is too low for drawing definite conclusions, station 2C-1 where no Pseudomonas, Vibrio, Aerobacter o Enteric was possible to isolate, station 3-A where only Flavobacteria sp. was identified and station 4-A where also Flavobacteria was the only isolate. In a very tentative form we could think that it seems that very great selective forces have been applied to that environment with the result of large benthic bacterial communities made up by one or two species. It is worth noticing that no Vibrio sp. no Enterobacter-Coliform group was isolated from the specimens taken at Mayaguez bay or Kincon Coast.

More interesting is the surprising fact that no micrococci grew out of any sample taken at Mayaguez Bay or Rincon Coast. It is necessary to do more ecological research in the three areas before anyone can put forth a definite explanation of this fact.

The requirement for sea water, or in other words of high concentration of sodium, in the medium was not reported in preceding papers. In table No.61 can be seen that the Pseudomonas group III and IV, Aeromonas sp. and Vibrio sp. isolated from the benthos of coastal areas of Puerto Rico have shown an absolute requirement for the addition of high concentrations of salt to the medium. It has been reported also that Pseudomonas, isolated from temperate seas failed to grow at 37°C, they belonged to group III and IV, and the same happened with the genus Vibrio. In our series both grew well at 37°C, fact that we confirmed many times through our studies. In the same table we are reporting data in relation with growth in skim milk, citrate activity, urease production, and growth at 25°C, 37°C and 45°C.
Also can be seen that the Flavobacterim sp. of marine origin failed to grow at 37°C and 42°C.

Flagellar characteristics were confirmed by the use of the electron microscope (Hitachi Perkin Elmer HU-11) and some abnormalities observed through the light microscope were also confirmed by the electron microscopy photography (see: Electron microphotographs of strains isolated from the benthos of tropical seas).

In relation to the media recommended for primary isolation in which peptone broth should be used, we recommend the use of aged sea water, following the procedure of Zobell (20), because many strains failed to grow in media without high salt concentrations.

The Kirsh-Bauer method (41) was followed for the sensitivity test.

The Muelle Hinton media should be replaced by marine agar since several of the strains tested did not grow on the former media. Consequently our interpretation of the tests as reported do not correspond with the

Kirsh-Bauer interpretation. Several investigators have tested sensitivity to penicillin by using 2.5 u discs. In the present report we used discs with 2 u of penicillin. We considered as sensitive to penicillin only those strains which failed to grow making an inhibition halo of 25 to 30 mm.

It is important to add that after comparing the diffusion ability of penicillin in the two media named above, we found that there was a better diffusion pattern for penicillin in Muller-Hinton media than in marine agar.

Finally a table to which some minor modifications have been made is shown in order to clarify the pattern followed for the classification of Gram negative bacilli (see table No. 62).

All the above data has been presented without regard to pollution, except that two known polluted areas were studied in contrast with an area where no major source of pollution has been noticed or scientifically detected and reported.

Pollution studies have been carried out by several researchers on the areas under study and its results published elsewhere (44, 45).

IV REAGENTS

Material and Methods

BACTERIOLOGICAL METHOD GRAM NEGATIVE BACILLI

1. Primary isolation - Inoculate on marine agar 2216 E, Difco.

Formula-Bacto Peptone	5.0	g
Bacto Yeast Extract	1.0	g
Ferric citrate	0.1	8
Sodium chloride 1	9.45	g
Magnesium chloride	8.8	8
Sodium sulphate	3.25	g
Calcium chloride	1.8	8
Potassium chloride	0.55	g
Sodium Bicarbonate	0.16	8
Potassium Bromide	0.08	g
Strontium chloride	0.034	g
Boric Acid	0.022	8
Sodium silicate	0.004	g
Sodium fluoride	0.0024	4g
Amonium nitrate	0.0016	6g
Disodium phosphate	0:008	8
A CONTRACTOR OF THE CONTRACTOR	5.00	g

Incubate samples at 25°C, from 48hrs to 8 days.

2. Motility

a) Inoculate in semisolid Edwards media. Formula of U.S. Department of Health:

"Enterobacteriaceae, Biochemical Methods for group differentiation"

by W.H. Ewing, Center for Disease Control, Atlanta, Ga.

Formula-Motility medium

Beef Extract	. 3	8
Peptone	10	g
Sodium chloride	5	8
Agar	4	g
Distilled H20 10	ЮО	ml.
pH 7.4 Sterile 121°C, 15 min.		

Stab the specimen into the top of the media column to a depth of about 5mm.

b) Inoculate in marine broth and incubate 24hr. at 25°C.

Prepare hanging drop and observe motility under microscope using high dry lens 40% and ocular 10%.

3. Gram Stain. (Bacto Gram Stain by Difco)

Loopfulls of specimen from marine broth medium are placed on a glass slide and allowed to air dry. Heat-fix through a low flame avoiding over heating. Allow to cool then flood with gram crystal violet stain for one minute. Wash. Rinse. Add bacto gram Iodine one minute. Wash. Flood off excess water with Bacto gram decolorizer until solvent runs colorlessly from the slide. Wash. Flood with bacto gram safranine one minute. Wash. Blot with paper and allow to dry. Use oil inmersion.

4. Morphology.

Observe gram stain with ocular 10X WF-24 and oil immersion lens A 355191 (Leitz microscope).

5. Colony appearance.

Inoculate marine agar from a pure culture. Incubate at 25°C for 48hr. Observe under dissecting microscope with 10% ocular, lens U.S. Polt. 2093605 Bausch & Lomb.

6. Pigment of colony.

Inoculate marine agar from a pure culture. Incubate at 25° C for 8 days.

Pick a colony and spread it on filter paper Wahtman no. 2 Observe pigment.

7. Oxidative-fermentative test.

Difco, certified MOF medium was used. To 100 ml of sterile basal medium aseptically add 10ml. of 10% Seitz filtered sterile Bacto dextrose solution.

Mix thoroughly and dispense 5ml. into sterile culture tubes. Inoculate in duplicate from the growth obtained in the marine broth. Use sterile capillary pipettes. Cover one tube with paraffin. Observe reactions in tubes for 10 days.

8. Test for carbohydrate utilization.

Prepare lactose, sucrose, and mannitol media, using MOF medium and some concentration of carbohydrate as above. Do not cover with paraffin.

Observe daily for 10 days.

9. Pigment production.

Media por pigment enhancement of pseudomonas used for this purpose was that of E.O. King (1959) (14)

Medium A:

Bacto peptone	20	g.
Glycerol CP	10	ml.
Mg Cl ₂ (anhyd)	1.4	8.
K2(SO ₄) (anhyd)	10	8.
Agar	15	g.
Distilled water1	000	m1.
Medium B:		
Proteose peptone #3	.20	g.
Glycerol C.P 1	0	ml.
KH (PO ₄)	1.5	8.
Mg (S04)	1.5	g.
Agar 1	5	g-
Distilled water 100	0	ml.

Dispense 3 ml. in 100 mm X 125 mm tubes. Sterilize 15min., 151b. and slant. Inoculate slants with cultures grown in marine agar. Incubate at 25°C for 10 days. Observe daily with and without ultraviolet light for fluorescense. Use Wood's lamp. Medium A will show production of pyocyanin, medium B will show fluorescein production.

10. Casein Hydrolysis.

Use marine agar plus 30 % skim milk. Prepare and sterilize 15 ml tubes with marine agar. Prepare the skim milk and inspissate. Add 4.5ml. of skim milk to each tube containing 15ml. of marine agar (melted and kept at 42°C. Pour into a pefri dish) inoculate the plates with cultures grown from marine broth. Incubate for 24, 48 and 72 hr. at 20°C.

Observe for hydrolysis and pigment.

II. Enhancement of pigment production by Pseudomonas, and 2-Ketogluconic acid production

Dihydrogen ammonium phosphate 1.0g
Potassium chloride
Crystalline magnesium sulfate 0.2g
Potassium or sodium gluconate 5.0g
Distilled water 400 ml.
Add 2ml. of 0.5% w/v of 8-hydroxyguinoline in redistilled chloroform,
allow to settle and remove. Repeat three times. Wash with 5ml. of redis-
tilled chloroform removing excess oxime. Complete to one liter with dis-
tilled water; adjust to pH 7 and dispense into tubes and sterilize.
Inoculate and incubate, for 48 hr. at 25°C; observe pigment production with
U.V. light using Wood's lamp.

Impregnate a sheet of whatman no. 1 paper with a saturated solution of recrystallized aniline oxalate and spot the with the culture, heating in an oven at 105°C for 2-3 min.

Red spoting indicates the presence of 2-Ketogluconic acid

12. Flagella determination:

Cultures grown in marine broth for 24hr. at 25°C were twice centrifuged and washed with fresh distilled water and resuspended in distilled water to a light turbidity. Let a drop to run to the other end of an acid cleaned glass slide. Air dry. Do not heat fix. Stain with flagellar stain (Leiffson's) for 8 min. Wash with strong water flow. Air dry. Examine for flagella.

13. Antibiotic sensitivity.

Discs impregnated with 2u of penicillin and 10 ug of tetracycline were used. Crystals of 0.129 were sprayed over an area of the inoculated plate. Incubate at 25°C for 24hr, interpret zones of inbition as sensitive or resistant.

14. Oxidase test

- a) Kovac's method: using Whatman filter paper no.1, Lay a 6cm. square in a petri dish. Put 3 drops of 1% of tetrametyl-p-pheylenediamine dihydrochloride in the center of the paper. Pick a colony and smear it on the paper. Observe the development of a dark purple color in 5-10 sec. if the bacteria is oxidase positive
- b) Use commercial test papers (Pathotex from Warner-Chilcott).

15. Urease production

-s. orese broadcrion	
The media used was Christensen's urea agar of the following	ng formula:
Peptone	.1g.
NaC1	. 5 g.
Glucose	. 3 g.
Monobasic potassium phosphate	2 g.
Phenol red	0.012 g (6ml of 1:500 solution)
Urea	. 20 g
Distilled water	100 ml
Adjust pH 6.8 - 6.9, filter and - sterilize. Dissolve 15g	of agar in 900 ml.
of distilled water and sterilize. Cool to 50-55°C, add 10	00 ml urea con-
centrate . Mix and distribute into sterile tubes. Slant	the medium with
a deep butt.	
The urea agar was inoculated with three drops of each cult	ure and incubated
from 48 hr. to 10 days. Daily observation developing pic	k color confirms
the production of urease.	
16. Utilization of sodium citrate and ammonium salts.	E
The media consisted of:	
NaCl	5 g.
MgS04	0.2 g.
Ammonium dihydrogensulfate	1 g.
Dipotassium phosphate	1 g.
Sodium citrate	2 g.
Agar (washed vigorously for three days)	20 g
Distilled water	1000 ml.

Add 40 ml. of 1:500 brom thymol blue indicator.

Sterilize at 121°C for 15 min. and slant to obtain 1 inch butt and 1:5 inch slant. Inoculate the slants with 3 to 4 drops of the culture grown in marine broth. Incubate from 48 hr. to 10 days and observe for positive reaction from (green to dark blue)

17. Growth at 25°, 37° and 42°C

Determine growth at different temperatures by inoculating marine agar plates with pure cultures and incubate at said temperatures for 72 hr. Record results as growth or no growth.

GRAM POSITIVE COCCI MARINE MICROCOCCI

1. Isolation of organisms

Organisms were isolated by spreading from an inoculum (taken from the bentho's sample core) onto the surface of previously dried agar plates, and incubated at 25°C for 7 to 14 days. Figgerent colonies were selected from each plate, according to size, color and morphology.

The medium used for primary isolation and selection was one we designed as B.M. media consisting of the following ingredients.

Peptone (Difco)	2.5 g	<u> </u>
Yeast extract (Difco)	2.5 g	
FeP04	0.1 g	
Agar (Difco) 1	5.0 g	
"Aged" sea water 75	0 m	1
Distilled water 25	0 m	L

pH adjusted to 7.5 after sterilization at 15 lb/in2 for 14 min.

2. Characterization of isolates.

General procedure:

The B.M. media was used for the growth and maintenance of all cultures except that the agar was omitted and sterilization conditions altered in different ways. The agar and other specific ingredients were added when necessary.

3. Gram reaction

Cultures grown on B.M. agar for 48 hr. were stained by Gram's method, using "Difco" reagents consisting of gram crystal violet; gram iodine; gram decolorizer and gram safranine. Organisms were observed for staining using a Leits microscope with 100 X oil immersion objective and 10 X ocular.

4. Oxidase reaction

Using a modified Kovac method, a strip of Whatman no. 1 filter paper was impregnated with a 1% (w/v) solution of tetramethyl-p-phenylenediamine dihydrochloride (Eastman). Pick a colony and scrup it the wet paper. A positive oxidase reaction is recorded whenever a dark purple color appears within 5-10 sec.

The Patho-tec strip paper was used for comparison with the Kovac's method.

This is a commercial strip paper made by Warner Chilcott Co., Laboratories.

The colony is picked and scrubbed onto the paper strip. Those turning dark purple within 5-10 sec. were recorded as positive. A control of Pseudomonas sp. and E. coli were used for oxidase positive and oxidase negative organisms, respectively.

5. Catalase reaction

Allow 0.5 ml. of 3% (w/v) solution (prepared from 30% hydrogen peroxide solution) to fall on the surface growth of the organism growing on slants of B.M. agar and observe for 02 release. Uninoculated slants and a culture of Staphilocococcus sp. and Streptococcus sp. were used for control purposes.

6. Growth in a simple nitrogen medium.

To determine which cultures were able to grow in a much simpler medium, the following was inoculated with all cultures:

Glucose 5.0 g

Sodium citrate 1.0 g

 Sodium succinate
 1.0 g

 Sodium gluconate
 1.0 g

 Ammonium acetate
 1.0 g

 Potassium nitrate
 1.0 g

 "Aged" sea water
 .750.0 ml

 Distilled water
 .250.0 ml

Adjust pH to 7.5 and sterilize by steaming for 20-30 min. on 3 consecutive days.

Transfer cultures from B.M. fluid media to the above medium and incubate at 25°C for 14 days. Turbidity indicates that the medium is suitable for growth. If only slight turbidity is observed after 14 days, transfer the culture to another tube of the same medium and again incubate for 14 days. If slight turbidity appears, the organism was cataloged as growing in the medium.

7. Motility and cell morphology

Use a conventional microscope (Bausch and Lomb) with a 10X W.F. 22 ocular and a 40X objective.

The hanging drop technique was used to determine motility.

8. Oxidative and fermentative metabolism of glucose.

Investigate all cultures for the ability to produce acid from glucose, both aerobic and anaerobically. Hugh & Leifson's (9) medium can not be used. With the ability to acidify glucose, we encountered many difficulties and had to use 5 different kinds of media:

1) BM liquid media 1,000 ml Glucose 0.5 %

 Agar (Difco)
 0.25%

 Phenol red
 0.0015%

 pH
 7.5

Two tubes of the media were inoculated with the same culture; one baing covered with paraffin. The tube covered with paraffin oil showed an acid reaction, the other tube remained unchanged. It was assumed that something was reacting with the paraffin oil.

We prepared four other media, eliminating ingredients in a trial and error fashion.

The other media were prepared as follows:

2)	BM broth without peptone 1,0	00 ml
	Ammonium nitrate	0.25 g
	Glucose	0.5 %
	Agar (Difco)	0.25 %
	Phenol red	0.0015 %
3)	BM broth without peptone and yeast ex	tractI,00 ml
	Ammonium nitrate 0.2	5 g

 In all these media we inoculated two tubes with the same culture, one aerobically and the other anaerobically. We arrived at the conclusion that the ingredient reacting with the paraffin oil was the agar and was acting as a reducing agent.

9. Utilization of mannitol, maltose, arabinose, galactose and xylose.

Use the following medium:

Incubate cultures both aerobic and anaerobically. Examine daliy for acid production.

10 Nitrate reduction

Prepare media as follows:

Inoculate and incubate for 7 to 14 days before testing for nitrate reduction. Prepare the following solution:

Add 0.5 ml of the above solution to each culture tube. Positive reduction of nitrates to nitrites is recorded when a deepred or pink color develop. Faint development of color is recorded as negative. Use a Durham tube in each tube of nitrate media to determine the ability of the organism to reduce nitrate to a gaseous end product.

Action in Litmus milk

The medium consisted of 10% (w/v) solution of skimmed litmus milk powder (Difco) in distilled water. Sterilize by steaming for 20-30 min. on three consecutive days. The inoculated media was kept for 7 days and the action on milk recorded as no change, coagulation, digestion peptonization, etc.

11. Gelatin hydrolysis

The medium used for this test consisted of:

BM	br	oth	ì			• •)()	ml
Aga	r	(Di	L£co)	(w,																	1.	.5%
Ael	.at	in	(Dif	co)	(w,	/v)				 				: 4 :	• •	•	-	۰	•	,	0	.4%
W4.	1	-T			a+		70	++	ο.	40	0.64800	uet>05	W 1800	00000		50 (E		02.00			7	.5

Inoculate petri dishes which containing 15 ml of the above media incubate from 3.5 days at 25°C. Flood the growth on the paltes with a solution of mercuric chloride in HCl. (Hg Cl₂, 15g; conc HCl, 20ml; distilled water, 100ml) A precipitate is observed where the gelatin is not hydrolized. A clear zone around the colonies appear when the gelatin had been hydrolized.

12. Starch hydrolysis:

Replace the gelatin by starch 0.5% (w/v) in the medium prepared for galatin hydrolysis. Inoculate, incubate for the same period at the same temperature as for gelatin hydrolysis.

Flood the plate with a 1:10 dilution of gram's iodine solution. Starch hydrolysis is present when colonies are surrounded by a clear zone.

13. Casein hydrolysis:

For this medium a 10% skimmed milk solution (Difco) was used as a source of Follows:

a)	Skimmed	milk	(Difco)	 		100g
	Distille	ed wat	ter		 	1	,000m1

Sterilize by steaming for 20-30 min. on three consecutive days.

b) BM agar 1,000ml.

Dispense the agar in 15ml portions in tubes and sterilize by autoclaving 151b/15min.

Before using the medium add 1.5ml of skimmed milk to each 15ml of BM agar (melted and cooled to 42°C) and dispense into petri dishes. A smooth casein suspension is obtained when the agar mixture solidified.

Inoculate cultures on to the plates, incubate at room temperature (25°C)

and examine at intervals for up to 14 days. Casein hydrolysis is considered positive by elearing of the medium around the bacterial growth.

14. Lypolisis:

Fresh dairy cream was used as the source of fat. Sterilize fresh dairy cream at 151b/15min.

To BM agar, in 15ml tubes melted and cooled to 42°C, was added 1.5ml of sterile cream, mixed and poured onto petri dishes. Inoculate cultures onto the medium and incubate in day-light for 14 days.

Scrape the bacterial growth from the surface of the agar and flood with a saturated solution of aqueous copper sulfate. Let it stand for 15-20 min. Pour the excess off. An intense blue stain under the bacterial growth is taken as lypolisis.

15. Pigment

Scratch on the surface of a Whatman no.1 filter paper growth from strains which were grown for 14 days in daylight at 25°C on the cream agar described above. Examine for pigments in daylight.

Pigmentation was recorded as yellow, orange, magenta, etc.

16. Coagulase test

Inoculate all strains on both 2ml of B.M. broth and 2ml. typticase soy broth (Difco) and incubated for 7-10 days at 25°C.

Perform coagulase test as follows:

Bacto coagulase plasma 0.5ml

Bacterial growth from medium 0.5ml

Incubate the tubes at 37°C for 8 hr. observe for coagulation every 15min.

Keep incubated overnight and interpret after 18 hr. Use controls for coagulase positive and negative organisms by using Staphilococcus aureus coagulase positive and Staphilococcus epidermidis coagulase negative.

17. Hemolysis:

Inoculate every strain on blood agar plates using trypticase soy agar as base and %5 defibrinated sheep blood. Incubate for 48 hr. at 25°C. Interpret as hemolysis aclear zone around the colonies. Use a culture of beta hemolytic streptococccus and a gamma hemolytic streptococcus as positive and negative controls. The BM medium cannot be used because the high content of salt hemolizes the blood.

18. Growth in peptone broth

Prepare 1% peptone broth and dispense 2ml in tubes. Sterilize by autoclaving at 151b/15min. Inoculate onto the broth and incubate from 7 to 14 days at 25°C.

19. Growth in B.M. broth

Inoculate tubes with B.M. broth and incubate from 7 to 14 days at 25°C. Prepare the medium as follows:

Peptone (Difco) 2.5g

¥

\$1

Yeast extract (Difco)	. 2.5g
Fe PO ₄	. 0.1g
"Aged" sea water	750 ml
Distilled water	250 ml
Adjust to pH 7.5 after sterilization at 1	151b/15min.

₩.

577

93

SEA WATER CHEMICAL DETERMINATIONS MATERIAL, METHODS AND REAGENTS

For water sample collection a Kemmerer-type sampler recommended for samples collected from depths grater than 150 cm. was used. A valve release was used so that only when the sampler reached the bottom was a specimen taken. This sampler permits a threefold displacement of the bottle capacity to assure a proper sample collection. It was made of brass, bronze and nickel, plated, with a cylindrical body and cover joined by an airtight thread. The cottles used were made of glass or polyethylene and were cleaned with acid, rinse with distilled water and dried.

1. Dissolved Oxygen

Dissolved oxygen was determined by the use of a Hydrolab (R) apparatus made by ARA of Austin , Texas. The equipment was provided with a DO sensor. DO compensator and thermistor. It was calibrated once a week by reading in sea water and comparing with results of DO determinations made by the method recommended by Strickland and Parsons (42)

2. Temperature

Temperature determinations were simultaneously taken by using the Hydrolab equipment which was provided with a separate temperature sensor. It was calibrated once a week by taking readings in sea water at different temperatures controlled by a certified laboratory thermometer.

Both probes were attached to the Kemmerer-type sampler used for the collection of liquid samples at the bottom so when the water specimen was taken simultaneous measurements of DO and temperature were recorded.

3. Salinity

For salinity determinations the Hytech Model 6220 (R) salinometer made by GM manufactures of La Jolla, Calif. was used. Salinity was obtained from standard tables by calculating from chlorinity values. The tables were obtained with the apparatus.

4. pH:

The pH of each sample was measured by a glass electrode and a Beckman Model G.S. pH meter. It was measured at laboratory temperature and pressure and the pH of the sea water "insitu" was derived by calcutions involving the temperature and pressure of the sample when taken. The pH and the temperature of the solution is recorded if the sample was initially at a temperature of tC° when taken at a depth of "d" meter, its correct pH, in situ, is given by the expression: pHs= pHm - a(t-tm). The pressure variation is negligible for samples taken above 500m, and is given in a table for temperature correction for pH measurements.

5. Total Alkalinity

The total alkalinity determination was measured by mixing 100 ml of the sea water sample with 25 ml of 0.0100 N hydrochloric acid. The pH of this solution is measured. The standard acid in excess of that required to titrate the sample to the carbon dioxide inflexion point is computed from a knowledge of this pH and an empirical factor. This excess acid is the subtrated from 2.5 milliequivalents per liter (the amount initially added by 25ml. of 0.01 N acid) and the total alkalinity of the sample is thus evaluated.

6. Carbonate Alkalinity

The calculation of the Carbonate alkalinity was made by subtracting A from the total alkalinity where A is given in milliequivalents/
liter. A is found in standard tables (42) when salinity or chlorinity is known.

7. Total CO2

For total CO₂ content the carbonate alkalinity times F_T in millimoles/ liter will give the total CO₂. The F_T factor is found in standard tables when pHs (d), temperature and salinity or chlorinity are known.

8. Phosphate

Phosphate determination depend upon the reaction of orthophosphate with an acidified molybdate solution to form a phosphomolybdate heteropoly acid. It is reduced to phosphomolybdenum blue with stannous chloride. The product obeys Beer's Law under suitable conditions, up to 90ug PO₄ - P/Liter, (Deniges Method). The glassware should be cleaned and reserved only for phosphate determinations. A calibration curve is made by preparing several dilute phosphatessolutions such that each contains .25ug-of PO₄ - P/liter multiplied by the dilution factor.

Filter the sample, using a .5u membrance filter; add 2ml of a mixture of ammonium molybdate-sulfuric acid to a 100ml sample. Mix thoroughly. Record time and temperature. Make a turbidity blank, compare with distilled water at 705 mu. three minutes later add .2ml of a dilute stannous chloride solution while swirling. Measure and record the maximum absorbance. Make a reagent blank with filtered sea water.

Subtract the absorbance due the turbidity and due to the reagent blank. The concentration of the unknown sample maybe obtained by reference to the calibration curve.

The stannous chloride solution is prepared by dissolving 4.3g of SnCl₂ . 4H₂O in 10 ml of concentrated (12M, 37%, SP gr. 1.19) hydrochloric acid and dilute in 100 ml of cold boiled out distilled water. Dilute 5 ml of that solution to 25 ml with 5% (w/v) HCl, prepared with boiled-out distilled water.

9. Nitrate

As for nitrates determination no complete satisfactory method in sea water is presently available. However there is a simple method that is rapid, generally free of interferences, and is free of most of the difficulties inherent in other methods. The method consists in adding an equal volume of sulfuric acid to a solution which contains both nitrate and chloride and measuring the development of strong intensity band at 230 mm. At this wave-length, Beer's law is object up to 3mg NO3- N/liter.

In each of 150 X 20mm stopered test tubes, pipet 10.0ml of sample to one portion add 0.1ml of hydrazine sulfate solution (dissove 2g of N₂ H₄ . H₂ SO₄ in 100 ml of distilled water). Add 10ml of concentrated sulfuric acid to each test tube. (H₂SO₄ reagent grade, 98%, sp. gr 1.84). Cool in running water. Put the contents into 5cm cells; measure the absorbance of each at 230mu. Make a nitrate solution by dissolving 0.10lg of KNO₃ in distilled water and dilute to a liter. Dissolve \underline{X} ml of standard nitrate solution previously diluted 1 to 10.

Each sample will contain X. 14ug N/liter. Plot absorbance against concentration. The concentration of an unknown sample may be determined from the calibration plot.

10- Phenol

Phenol determinations were made by the chloroform extraction method in which the steam-distillable phenols react with 4-aminoantipyrine at a pH of $10.0 \pm .2$ in the presence of potassium ferricyanide to form a colored antipyrine dye. This dye is extracted from aqueous solution with chloroform and the absorbance is measured at 460 mu. The concentration of phenolic compounds is expressed as ug/l of phenol. This method covers the phenol concentration range of 0.0 to 1,000ug/l with a sensitivity of lug/l. (44).

TABLE No.

TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF THE SEA WATER AT THE BOTTOM

Station	90	PH.	Total Alka.	8%	C1/11ter (20)	Temp	Total CO ₃	Total CO ₂
	4.9	8.20	2.21	34.89	19.79	28	2.10	1.89
1 A	4.8	8.20	1.98	34.36	19,48	29	1.87	1.68
1 B	3.7	8.20	2.09	35.04	19.88	29	1.98	1.78
1 C	4.8	8.30	2.09	34.35	19.48	28	1.96	1.72
2	4.5	8.40	2.09	34.44	19,53	30	1.94	1.63
2 A	4.2	8.30	2.09	35.18	19.96	29	1.96	1,72
2 B	5.0	8.30	2.03	35.18	19,96	29	1.90	1.67
2 C	5.5	8.30	1.98	16.36	10.80	27	70 1	1 5.4

Chlorinity at 20 °C; Hydrogen fon concentration of bottom Total Alkalinity. C1/liter (20): Salinity; Alk.: pH: Total Dissolved oxygen in p.p.m.; S7.: Temperature in °C; sample, direct reading; Temp: ä

TABLE No. 2

TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF

min of it		2	- 19		10 W	· (
Total CO ₂	1,98	1.59	1,59	1,88	1.79	1,80	19.1	** **
Total CO3	2.06	1,75	1,75	2,02	1.93	1,96	1.75	**
Temp °C	29.5	29.0	28,5	28.0	28.0	28.0	28.0	
C1/11ter (20)	19.29	19.71	19.80		19.70	19.71	19.67	
	34.03	34,75	34.91		34.73	34.76	34.68	
Total Alka.	2,11	1.84	1.84	2.09	2.00	2.05	1.84	6 12
ЪН	7.78	8.05	8,10	7.99	7.99	8.07	8.14	
8	3.0	3.5	3.8	4.2	3.2	4.8	5.0	
Station	3	3 A	3 B	3 C	4	4 A	4 B	

Hydrogen fon concentration of bottom Chlorinity at Total Alkalinity. C1/11ter (20): Salinity; Temp: Temperature in °C; Total DO: Dissolved oxygen in p.p.m.; sample, direct reading; 5%:

TABLE No. 3

TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF THE SEA WATER AT THE BOTTOM

Station	8	Бď	Total Alka,	%S	C1/11ter (20)	Temp	Total CO3	Total CO ₂
-	5.5	7.95	2.24	34.90	19.80	29.5	2.18	2.09
A A	5.3	8.00	2.21	35.24	19,95	29.5	2.14	2.09
13	5.8	7.95	2.24	35.34	20.05	29.5	2.18	2.09
1 C	5.8	8.05	2,21	35.34	20.05	29.5	2,14	2.09
2	5.0	7.90	2,27	35.15	19.94	29.0	2.21	2.12
2 A	5.9	8,00	2.20	35.37	20.07	29.0	2.13	2.00
2 B	5.5	8.00	2,21	35,39	20.08	29.0	2.14	2.09

Chlorinity at 20 °C; Dissolved oxygen in p.p.m.; pH: Hydrogen ion concentration of bottom Total Alkalinity, Salinity; C1/liter (20); Alk.: Total : 2% င္ပံ sample, direct reading; Temperature in Temp: ë

TABLE No. 4
TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS

1 Total CO ₂	17.7	79"1	1.86	1.67	2.32	1.67	1,74	1 67
Total CO3	1.81	1.78	1.93	1,78	2.26	1.78	1,80	1 78
Temp o.	26	26	26	56	26	26	26	96
C1/liter (20)	20.43	20.37	20.41	20.35	20.43	20.34	20.43	20.35
%S	35.986	35,883	35.959	35.859	35.979	35.836	35,987	25 250
Total Alka.	1.85	1.85	1.98	1.85	2.27	1.85	1.85	0
μď	7.70	8.00	7.85	8.05	7.35	8.00	7.80	מ פ
0 0	4, 1	4.7	4.3	5.2	4.2	4.8	4.9	6
Station	3	3 A	3 B	3 C	4	4 A	4 B	ζ,

Hydrogen ion concentration of bottom 2 Chlorinity Total Alkalinity. C1/11ter (20): Salinity; Total Dissolved oxygen in p.p.m.; 5%: Temperature in °C; sample, direct reading; Temp: ä

TABLE No. 5 TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF THE SEA WATER AT THE BOTTOM

Chlorinity at 20 °C; Hydrogen ion concentration of bottom Total Alkalinity. C1/1iter (20): Salinity; Total Alk.: H Dissolved oxygen in p.p.m.; :%8 Temperature in °C; sample, direct reading; Temp: . 00

TABLE No. 6

TALLABOA BAY

ğ CHEMICAL AND PHYSICAL DETERMINATIONS

	8	20 20	31	88	190	Ğ **	
1,76	1,82	1,34	1.91	1.76	2.08	1,86	1.76
1.90	1.96	1.45	2.06	1.88	2,24	1.98	1.90
29,5	29.0	29.0	29.0	30.0	28.5	29.5	29.5
19,89	20.00	19.91	20,14	19,32	20,09	20,17	19.86
35.058	35,249	35.098	34,098	34,088	35.400	35,539	35,015
2,18	2.04	1.53	2,14	1,95	2.32	2.05	1.96
8.15	8.15	8.12	8.12	8.00	8.15	8.00	8.15
5.1	0.9	5.8	5.0	4.8	5.8	5,5	6.2
3	3 A	3 B	3 C	4	4 A	4 B	2 7
	1 8.15 2.18 35.058 19.89 29.5 1.90	5.1 8.15 2.18 35.058 19.89 29.5 1.90 A 6.0 8.15 2.04 35.249 20.00 29.0 1.96	5.1 8.15 2.18 35.058 19.89 29.5 1.90 1.76 6.0 8.15 2.04 35.249 20.00 29.0 1.96 1.82 5.8 8.12 1.53 35.098 19.91 29.0 1.45 1.34	5.1 8.15 2.18 35.058 19.89 29.5 1.90 1.76 6.0 8.15 2.04 35.249 20.00 29.0 1.96 1.82 5.8 8.12 1.53 35.098 19.91 29.0 1.45 1.34 5.0 8.12 2.14 34.098 20.14 29.0 2.06 1.91	5.1 8.15 2.04 35.058 19.89 29.5 1.90 1.76 6.0 8.15 2.04 35.249 20.00 29.0 1.96 1.82 5.8 8.12 1.53 35.098 19.91 29.0 1.45 1.34 5.0 8.12 2.14 34.098 20.14 29.0 2.06 1.91 4.8 8.00 1.95 34.088 19.32 30.0 1.88 1.756	5.1 8.15 2.18 35.058 19.89 29.5 1.90 1.76 6.0 8.15 2.04 35.249 20.00 29.0 1.96 1.82 5.8 8.12 1.53 35.098 19.91 29.0 1.45 1.34 5.0 8.12 2.14 34.098 20.14 29.0 2.06 1.91 4.8 8.00 1.95 34.088 19.32 30.0 1.88 1.76 5.8 8.15 2.32 35.400 20.09 28.5 2.24 2.08	5.1 8.15 2.18 35.058 19.89 29.5 1.90 1.76 6.0 8.15 2.04 35.249 20.00 29.0 1.96 1.82 5.8 8.12 1.53 35.098 19.91 29.0 1.45 1.34 5.0 8.12 2.14 34.098 20.14 29.0 2.06 1.91 4.8 8.00 1.95 34.088 19.32 30.0 1.88 1.75 5.8 8.15 2.32 35.400 20.09 28.5 2.24 2.08 5.8 8.00 2.05 35.539 20.17 29.5 1.98 1.86

Hydrogen ion concentration of Chlorinity Total Alkalinity. C1/liter (20); Salinity pH: Total All DO: Dissolved oxygen in p.p.m.; 87: Temperature in °C; sample, direct reading; Temp:

TABLE No. 7

TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF THE SEA WATER AT THE BOTTOM

اريسانيد ووريوسيسا

Phen ng/L			80					
Nitr]	0.30	0.30	0,30	0.30	Less	Less	0.30	
Phosph MgP04-P/L	Less 0.1	Less 0.1						
Total CO ₂	1.98	1.93	1.87	1.83	1.83		1.79	
Total CO3	2.01	1.95	1.89	1.82	1.82		1.87	
Temp °C	29.5	29.0	29.5	29.0	29.5	29.0	29.5	
C1/liter (20)	19,19	19.46	19.32	17.48	17.55		17.78	
2%	33.85	34.32	34.08	30.91	31.03		31.42	
Total A1k	2.04	1,98	1.92	1,84	1.84	Specimen lost	1.92	
Hď	7.6	7.6	7.6	7.5	7.5		7.9	2001
8	6.3	5.8	6.0	4.5	4.9	5.2	5.5	
Station	-	1 A	1 B	4	4 A	4 B	4 C	

Total Alkalinity; Hydrogen ion concentration of bottom sample, direct reading; Total Alk: Temperature in °C; Temp: Phenols. ပ္ပံ Phen: Chlorinity at 20 pH: Nitrates; Dissolved oxygen in p.p.m.; Phosphates; Nitr; C1/11ter (20); Salinity; Phosph: 30:

TABLE No. 8
TALLABOA BAY

BOTTOM SEA WATER AT THE CHEMICAL AND PHYSICAL DETERMINATIONS OF

Phen mg/L	Trace	Trace			Trace	Trace		
Nitr µ8/L	0.50	0.50	0.75	0.75	0.50	0.50	0.30	0.30
Phosph PgP04-P/L	0.20	0.20	Less 0.1					
Total CO ₂	154	19.1	1.80	1.79	1,59	1.70	1.65	1.79
Total CO ₃	1.68	1.76	1,82	1.87	1,70	1.79	1.78	1.87
Temp	28	28	28	28	78	28	82	28
C1/liter (20)	20.59	20.65	20.60	20.59	20.65	20.67	20.65	20.69
S%	36,259	36.370	36,274	36.269	36,356	36.404	36.368	36, 269
Total Alk	1.77	1,85	1.85	1.92	1.71	1.85	1,85	1.92
PH	8,15	8.10	7.60	7.85	8.05	7.90	8.00	7.85
ро	5.0	4.9	4.9	5.0	4.8	5.0	5.1	4.2
Station	-	1 A	1 B	1 C	2	2 A	. 2 B	2 C

Total Alkalinity; direct reading; Hydrogen ion concentration of bottom sample, Total Temperature in Temp: Phenols Chlorinity at 20 °C; Phen: Dissolved oxygen in p.p.m.; pH: Nitrates; Phosphates; Nitr: Salinity; Cl/liter (20): Phosph: 90

TABLE No. 9
TALLABOA BAY

CHEMICAL AND PHYSICAL DETERMINATIONS OF THE SEA WATER AT THE BOTTOM

Station DO pH Total S% C1/liter Temp Total Total Phosph Nitr Phen (20) °C CO3 CO2 MBPO4-P/L Mg/L mg/L mg/L (20) °C CO3 CO2 MBPO4-P/L Mg/L mg/L mg/L (20) CO3 CO2 MBPO4-P/L Mg/L mg/L (20) CO3 CO2 MBPO4-P/L Mg/L mg/L (20) CO3 CO2 MBPO4-P/L Mg/L (20) CO3
DO pH Total S% C1/liter Temp Total Total Phosph (20) °C C03 C02 µgPOqP/L C20) °C C03 CO2 µgPOqP/L Less S.20 1.76 34.48 19.55 30.0 1.65 1.50 0.1 Less S.9 8.25 1.67 34.32 19.46 29.0 1.54 1.34 Less O.1 S.0 7.95 2.13 34.42 19.52 29.0 2.05 1.91 0.20 S.0 8.05 1.98 34.36 19.48 29.0 1.89 1.72 0.20 S.0 8.05 1.98 34.36 19.48 29.0 1.89 1.72 0.20 S.0 8.05 1.67 34.27 19.43 29.0 1.56 1.39 0.20 S.0 8.05 1.67 34.27 19.43 29.0 1.56 1.39 0.20 S.0 8.05 1.67 34.27 19.43 29.0 1.55 1.30 1.55 1.55 1.57 34.57 19.48 29.0 1.55 1.50 1.55 1.50 1.55 1.55 1.55 1.
DO pH Total S% GI/liter Temp Total Total CO3 CO2 CO3 CO2 CO3 CO3 CO2 CO3
DO pH Total S% CI/liter Temp Total Tot (20) °C
DO pH Total S% C1/liter Temp T Alk Alk (20) °C
DO pH Total S% CI/liter T (20) 5.2 8.10 1.76 34.48 19.55 5.4 8.20 1.76 34.57 19.60 5.9 8.25 1.67 34.32 19.46 6.1 8.20 1.76 34.45 19.53 5.0 7.95 2.13 34.42 19.52 5.0 8.05 1.98 34.36 19.48 5.5 8.15 1.67 34.27 19.43
5.2 8.10 1.76 34.48 5.4 8.20 1.76 34.57 5.9 8.25 1.67 34.32 6.1 8.20 1.76 34.45 5.0 7.95 2.13 34.45 5.0 8.05 1.98 34.36 5.5 8.15 1.67 34.57 5.4 8.20 1.67 34.53
DO PH Total Alk 5.2 8.10 1.76 5.9 8.20 1.76 6.1 8.20 1.67 5.0 7.95 2.13 5.0 8.05 1.98 5.5 8.15 1.67 5.4 8.20 1.67
5.4 8.20 5.9 8.25 6.1 8.20 5.0 7.95 5.0 8.05 5.5 8.15
5.4 5.0 5.0 5.5
3 A 4 A 4 B 4 C
AND

Total Alkalinity; ion concentration of bottom sample, direct reading; Total Alk; Temperature in °C; Temp: Phenols, pH: Hydrogen Salinity; Cl/liter (20); Chlorinity at 20 °C; Phen: Nitrates; Dissolved oxygen in p.p.m.; Phosphates; Nitr: Phosph:

Table No. 10 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase \ Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u nsi-Terramycin 10 mcg vity 0/129 Tentative i.d.

				7.07			\$3 -					- 58	1848		26
1	2	;3	4	5	6	7	8	55 84.00	-					- 12	
St	54 50	SE	Ser	SE	Str.	XX	52								
+-	+	+	+	+	+	土	+	il S			L.				\$. 1 x
	_		_				-	-27		8.3					
43	tir.	tra	CX	tra	t's a	ti x	0 %								
	_		-	I	-	-	-								
_	_	-	_	1		-	-								
	-	_		_		_	_								
_	-	1			-										
-					-		-								
_	_				_	_	_								istorios Es Espaini
	_	_		_	-	_	_								
-	3	_	_	_			-								
+	+	+	+	+	+	+	+								
_	-			-	_	_	_								
P	P	Per	Per	Per	P	P	Per								
+	+	_	+	+	+	±	+					1_		L	
+	+	_	+	+	+	+	+								<u> </u>
_		_	_		S imulat		-			1_					
+	+	_	_		+	+	_				L				
	-	+			-	_	_				1	1_	<u> </u>		
土	+	+	+	+	上	+	上		<u> </u>	1_	1	1			
+	+	+	+	+	+	+	+				1		!		
_	=	-	E	=		_	<u> </u>		<u> </u>		1	<u> </u>	_	<u> </u>	<u> </u>
<u></u>	_		_	-	<u> </u>	_	<u> -</u>		_	_	1.	1.	<u> </u>		<u> </u>
R	R	R	R	R	R	R	R		_	1.			<u> </u>	ļ	<u></u>
S	S	S	S	S	5	5	S				1		1	<u> </u>	<u> </u>
R	R	Q	R	R	R	Ŗ	R		1_	_	_		1_	_	
62	830	1400	AP	ME	190	Q3	44	_	<u> </u>	8			13.		1

M.A.: marine agar plus 30% skimmed milk

Str : straight R : resistant
S1 : slender Per: perithricons
Tr : translucent S : sensitive
M : mucoid Ps : pseudomonas
P : polar Myco Mycoplana

Table No. 11 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1-1

Strain No. Morphology Motility -Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovace Oxidase Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg Livity 0/129

Tentative i.d.

1	3	5	8				T			Π	
32	推	5	Sh SE							T	
	+	-			T		Γ	1			
-	.		_			П					
E	Go	40	Gr					Γ		1	<u> </u>
	-		-		T				1		
-	1-1	-	1-1		T		\top			1	
AK	HK	AIR	ALL	1					T		1
AK AK	ALK.	AK	ALK	T	T	1		1			
ALL	HK	AK	MIK						T		
妣	HK	AIK	HIL						1		
-	-		1-1								
		-	-		1	W			1		
1	+		-		Aleman e						0.00
J	-										
-	P	-			68 556						
+	+	+	+								
+		+	4	000 900 0 10 888							
-	+		-	8							
+	-	+	+								
+	+	+	+	18							
+	. +	+	+								
-	+		-						##	- 83	
-	+	-									
5	5	5	S					5.00.00			
S R	R	S	S		3						
R	R	R	R								
Alva	RI	Mile	Alk								

M.A.: marine agar plus 30% skimmed mi

Sh : short P : polar
St : stout S : sensitive
Gro : graysh, opaque R : resistant
Alk : alkaline Ps : pseudomonas

Alka: alkaligenes

Table No. 12 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1-A

92 92	Strain No.
	Morphology
	Motility
製	Gram Stain
Colony	appearance
	Pigment
Oxidati	ve Glucose
Fex	m. Glucose
	Lactose
14	Sucrose
	Mannitol
King's	luorescein
write e	Pyocianine
M.A. + 3	30% S. Milk
Pat	on's Media
Flage	llar Stain
Orddo	∫ Kovacs
UNLUA	se { Kovacs Paper
	Urea
Simmon	's Citrate
Growth p	eptone H ₂ O
Growth ma	rine broth
Grov	/th {25°C
GLOV	42°C
Per	icillin 2u
Sensi Zerramy	cin 10 mcg
tivity	0/129
Tenta	ative i.d.

			10	1 19									
1	2		4	5	6		8						
Sh	Sh	8	5.	67	3	ii Hymesi	8	¥					353
+	+		+	+	+		+			 			
-	_	333333	-		-		-	MA 8	•				
70	ঞ		Gr	2	G.		Go					() ()	# #
-	_			y	-		_	V Verife	6 7				
_	-		+	+	-								
从	_		_	W			_			T			
MX	-			W	_								
AK	_			W			_		- 27	,			
MX	-		-	W	-		_						
F	-		+	-	_	eus)	-						
_	_		-		_								
+	+		+	+	+		+			5			
	-		+	_	_			87 - 87 - 1 27					
P	P		P	P	P		P						
+	+		+	+	+		+						
+	+		+	+	+		+-						
_	_		土	+	-								
+	+		1	+	7		+	8					
=	=		1	+	-				8				
+	+		+	+	+		+	1651	83 83				
+	+		+	+	_		+-						
	+		+	-	+		-						
-	+		+	_	+		_		ji se sa				
55	R		R	R	35		R						
R	R		D	R	R		R						
R	R		R	Q	R		R						
颜	84		85	5	ESS.		83			1			

M.A.: marine agar plus 30% skimmed milk

Sh : short Y. : yellow R : resistant
St : stout Alk : alkaline S : sensitive
Coc : coccoid P : polar Ps : pseudomonas

Gro : graysh opaque I : weak Ss : slightly sensitive

Ry : rough-yellow ? : xantomonas

Table No. 13 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1-A-1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensi-Terramycin 10 mcg civity 0/129

Tentative 1.d.

	2	3	5	6	7	8					T			T
	Se St	Gir Cor	_ 33	Str	St.			T	T				1	†
	+	153 66	+	+	+	+				1		1		T
	_	-	-	_	T-	-		Т	1		1		\top	t
9	LE	tr m	5	4	tr	tr		Ť	1	1	T	1	T	T
	-	-		-	_	-			1			Τ	T	T
	-			_	_	-			1	Τ			T	T
	-	-	_	-	-	-		T				1	Г	T
	щ.	-		-				Τ		T	T			
1	_	-		-	-				78					T
			-	+	_	-		T			3 330			
.		-	_			_				1	T	Т		
	-	_		1	_									T
	+	+	+	+	+	+								T
		-	-	-	_					T			Π	T
	P	P	P	P	P	p			5 5		Π			Γ
	+	+	-1-	+	+	+								
	+	+	-}-	+	+	+								Γ
	_	3 7.0273 5		-		=				L				
\perp	+	+	+	+	+-	+							8	
	50000 20000 20000	-		-	-									Γ
1	+	+	+	+	+	+							12	
	+	+	+	+	+	+								
1	+	+	+	+	+	+	5.0							
-	+	+	+	+	+	<u>+</u>]					Sal			
1	R	R	R	R	R	R								
	2	5	S	s	S	S	9854							
	RI	R	R	R	R	R							grand	
Q.	1	439	100	K	3	3								

M.A.: marine agar plus 30% skimmed milk

S1 : slender

P : polar

Sh : short Coc : coccoid

R : resistant S : sensitive

Tr : translucent

Ps : pseudomonas

M : mucoid

		-	77	1		~	17	0	T	Т	Ŧ					7
Strain No.	1	4	3	7	5	0	(8		-	-					
Morphology	Sh	Cax.	Coc	Sh Coc.	Cox	Sh	Sh	Car	_	_	4					
Motility	+	+	+	+	+	+	+	Ť		1	4	2242			4.7.7.	
Gram Stain		_	-	<u>-</u>	-		-	-								_
Colony appearance	新	Cr	Cr	tr	50	24	C'm	58			_					
Pigment	_	_	_	_	_	_	_	-			_	_				_
Oxidative Glucose	_	_	-		-			_			\perp				s	
Ferm. Glucose	_	-	-		_	-		_								
Lactose	-	_	-	_	-	_		_								
Sucrose	-	-	-		_	_	_	_				-0.00				
Mannitol		-	_		_	_		_								
King's Fluorescein	_			-	-	_	_	-								
Pyocianine	_	1	_	_	_			_								
M.A. + 30% S. Milk	+	+	÷	+	+	+	+	+								
Paton's Media	_	-	=	-	_		_									
Flagellar Stain	P	9	P	P	P	P	P	p					L			
Kovacs	+	+	+	+	+	+	+	+								
Oxidase $\begin{cases} \text{Kovacs} \\ \text{Paper} \end{cases}$	+	+	+	+	+	+	+	+						_		
Urea	_	_	-]_	_	_		_								
Simmon's Citrate	4-	+	+	+	+	+	+	+					<u> </u>			
Growth peptone II20		_	-		<u> -</u>	_	<u> </u>	<u> </u> —							<u> </u>	
Growth marine broth	土	+	+	+	L±	+	<u> </u>	+					<u> </u>	<u> </u>		
∫25° C	+	+	+	+	t	+	+	+							<u> </u>	
Growth 37°C	+	+	+	+	+	+	+	+						_		
42°C	土	土	+	十	1	1	+	+							<u> </u>	
Penicillin 2u	R	R	R	R	R	R	2	R			2240		<u> </u>		<u> </u>	
ensi (ferramycin 10 mcg	S	S	S	5	5	5	S	5						_		
Civity 0/129	R	R	R	R	R	R	8	2						L	<u> </u>	
Tentative i.d.	83	en	15	水沙	(X)	(Q)	(V)	(3)						L		

M.A.: marine agar plus 30% skimmed milk

Table No. 15 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1-B-1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H2O Growth marine broth Growth Penicillin 2u Sensi-Terramycin 10 mcg Livity 0/129 Tentative i.d.

					-100 OR				10-0-01 A 2.1				
2	4	5	6					Π		T	T		
h	34	캝	34				ÌΤ						
Ė .	+	+	+					l		Π	Г		
-	_	-	_					1	1	\top	厂		
G I	t _s	tr	5					-		1			
-	_	-							十	1			
F	+	+	_										
-	_	-	AIK		ay—staay		İ		T		1		
_	_	_			_								
-1		_							†	 			
-	_	_							1	1	1		
-		-	_						 	1	1		
=	_	_							T		1		
-	+	+	+							1			
_			_						╁┈╴				
	P	p	0						1	1	1		
	- 33	-		-					${\mathsf T}$	†	 		
		10							\vdash	-			
	-5	+						T	\vdash				
	+-			10-24(3-21)			<u> </u>	-	╁		-	 	
		+	+						T				
		+	-				63	厂	T				
Service successions	+	+		2 -		e -			1	1			
-	+-	+							1				
	+	+			-				T	2 V			
	R	8	9					-	T	1			
5 D 500	R												
	2	~					- 8	00.00			 		
N -	3	8	S	\dashv				-	1	+			
			+	+	#	H + + + + H H H H H H H H H H H H H H H	H + + + +	H + + + +	+ + + +	+ + + +	+ + + + + + + + + + + + + + + + + + +	H + + + + + + + + + + + + + + + + + + +	

M.A.: marine agar plus 30% skimmed milk

Sh : short Alk : alkaline SS : slightly sensitive

St : stout P : polar Ps : pseudomonas Coc : coccid I : weak R : resistant

Tr : translucent S : sensitive

M : mucoid

Table No. 16 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 1-C

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi-Terramycin 10 mcg tivity 0/129 Tentative i.d.

1	2	3	4	5	6	7	8								¥.
SE	Sestr	Str	Sir	3/5	Str	Car	Sir	50							
+	+	+	+	+	+	+	+				0)				
	-	-	<u>-</u> -	-	-	-	-	_ (ii.cee)							
tru	tr m	加加	ts m	tr	tr	tr	fr M	83.00							
	_	_	_	У	_	-	-					3			
-	-	-	-	-	-	-	-								
-	-	_	_	-	-	-	_								
	_	_	_	_	_	_	_								
_	-	-	_	-	-	-	-				上				
_	-	-	_	-	Ξ	-	-								_
	_		-	-	-	_] —						L	<u> </u>	
(t) 	-	-	-	-	-		-								L
+	+	÷	+	+	+	+	+						1_	_	
	<u></u>	_	<u> -</u>		_	_									
P	P	P	12	P	7	2	P					1_			<u> </u>
+	1	+	1	+	+	+	1					ii e			
1	+	+	+	+	+	+	+								L
-	<u>_</u>	_		-	_	_	_						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		
±	1=	±	+	_	+	+	<u>+</u>			$oldsymbol{\perp}$					1
_	<u> </u>	1-	_	<u> </u>		<u>. </u>	<u> - </u>				_		<u> </u>	_	1_
+	十	1+	+	+	; +	+	1+								
+	+	+	_+	_+	+	<u> </u>	1+			\perp	\perp				
士	<u>;</u> +	+	1	<u>:</u> ±	+	+	1,4			1	1		1		L
+	+	+	+	1+	<u></u> †	<u>.</u> +	+		_	Ļ	_		1_	4_	1
R	R	R	12	R	, R	'R	R			_		_	-		Ļ .
5	S	S	5	5	S	S	S						5, 52 - 10	<u> </u>	5
B	R	R	R	R	R	R	R				1			_ _	
6.0	Kg.	QU	(3)	1?	RA	No.	183	1	2000-20		I				8

M.A.: marine agar plus 30% skimmed mil

S1 : slender P : polar
Str : straight R : resistant
Tr : translucent S : sensitive

M : mucoid <u>f</u> : weak

Y : yellow Ps : pseudomonas

Table No. 17 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 2

	F . T				 	 	
Strain No.	1	3	5	7			
Morphology	St	SA SE	36	Str Str			
Motility	+	+	+	1+			
Gram Stain		- -					
Colony appearance	60	Gr	Gr	Gr			
Pigment		-		-			
Oxidative Glucose	+	+	+	+			
Ferm. Glucose		-				4	П
Lactose		-		-			
Sucrose		- -		_			
Mannitol							
King's Fluorescein	+	+.					
Pyocianine	+	+		-			
M.A. + 30% S. Milk	+	+	+				
Paton's Media	+	+		-			
Flagellar Stain	B	P	P	P			
Oxidase Kovacs	+	+	1	1+1			-
Oxidase { Kovacs Paper	+	+	+	1+1			П
Urea	_		-				
Simmon's Citrate	+	+	*	<u>t_</u>			
Growth peptone H2O	+	+	+	+			
Growth marine broth	+	+	+	+			
(25° C	+	+	+	+			
Growth 37°C	-t-	+	+	+			
42° C	+	+	+ !	+			
Penicillin 2u	R	2	R	R			
ensi-Terramycin 10 mcg	R	R	5	S			
ivity 0/129	R	R	R	12			
Tentative i.d.	853	BI	SI	KI)			

M.A.: marine agar plus 30% skimmed milk

Sh : short P : polar I : weak
St : stout S : sensitive

St : stout S : sensitive
S1 : slender R : resistant
Str : straight Ps : pseudomonas

Table No. 18 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 2-A

				275 Jan 1980	e ter Wer tre
Strain No.	12	45	7		
Morphology	32 32	St St	菱		
Motility	++	++	+		
Gram Stain	-1-1	- -			
Colony appearance	tr tr	Er Er	5		
Pigment		- -			
Oxidative Glucose	+-	- +	+		
Ferm. Glucose	- -	_ _			
Lactose			-		
Sucrose	_ _				
Mannitol			-		
King's Fluorescein			+		
Pyocianine		- +	+		
M.A. + 30% S. Milk	+ +	+ +	+		
Paton's Media		- +	+		
Flagellar Stain	PP	PP	P		
Owiden S Kovacs	+ +	+ +	+		
Oxidase { Kovacs Paper	++	++	+		
Urea	<u> </u>		さ		
Simmon's Citrate	+ -	- +	+		
Growth peptone H2O	+ -	- +	+		
Growth marine broth	+ +	++	+		
(25°C	+ +	++	+		
Growth 37°C	+ +:	+ +	+		
42° C	+ +	+++	+	111.	
Penicillin 2c	RR	RR	R		
ensigTerramycin 10 meg	SIS	SS	S		
:ivity 0/129	RR	RR	R		
Tentative i.c.	KIN BY	र्भिष्ठ	<u> </u>		

M.A.: marine agar plus 30% skimmed milk

Sh	•	short	P	:	polar
St	:	stout	R	:	resistant
Tr	:	translucent	S	ŧ	sensitive
M		mucoid	Ps	:	pseudomonas

Table No. 19 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 2-B

Strain No. 34 Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose MK Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain P Oxidase | Kovacs Paper + Urea Simmon's Citrate + Growth peptone H20 Growth marine broth + + Growth 55 Penicillin 2u 55 Bensi Terramycin 10 mcg civity 0/129 Tentative i.d.

M.A.: marine agar plus 30% skimmed milk

: short #-: weak

Coc : coccoid SS : slightly sensitive Gro : graysh opaque Ps : pseodomonas

Alk : alkaline

: polar

Table No. 20 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 2-C

Strain No. se se se st sh sh cur cur cur cu. cu Morphology + Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth (25°C Growth PERREPE Penicillin 2u 5 5 5 5 lensi Terramycin 10 mcg civity RRESISSR 0/129 Tentative i.d.

M A .: marine agar plus 30% skimmed milk

Sh : short
Coc : coccoid
Trm : translucent moist
Alk : alkaline

R : resistant
S : sensitive
Vib: vibrio
Ps : pseudomonas

P : polar

Table No. 21 Biochemical and morphological characteristics of Gram Negative bacilli at Tallaboa bay. Station 2-G-1

M.A.: marine agar plus 30% skimmed milk

No gram negative flora present.
All isolates were Gram + bacilli.

Table No. 22 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3

Strain No.
Morphology
Motility
Gram Stain
Colony appearance
Pigment
Oxidative Glucose
Ferm. Glucose
Lactose
Sucrose
Mannitol
King's Fluorescein
Pyocianine
M.A. + 30% S. Milk
Paton's Media
Flagellar Stain
Ordense Kovacs
Oxidase { Kovacs Paper
Urea
Simmon's Citrate
Growth peptone H20
Growth marine broth
Growth $\begin{cases} 25^{\circ}C \\ 37^{\circ}C \\ 42^{\circ}C \end{cases}$
Penicillin 2u
ensi Terramycin 10 mcg
ivity 0/129
Tentative i.d.

									,	, ——,		-			
1	2	3	4	13	6	7	8	9	10	11	12	13	14	15	
ಶಿಷ	35	35	Cre		Si.	26	54	Sh	Cor	She	35	55	St	Sta	
+	+	+	+	85 35 85	+	+	+	+	+	+	_	+	_	+	
_			-		_	-		_	_	-			_	_	
tra	50 1	tr	Gr		5	5	40	た	5	tr	G	Ł	4	tr 24	3
-	_	_	_			_	_		_		_		-		_
	4	+									50 Vie				
AIK	-	-	+		AW	HK					_		34)	-	
13)					AIK	14		•	_		*	-	AK AK	<u> </u>	
米					MY	Lin		_	_	_		+	TIV		
111		_			1111	/1K		_			etote		LU		
AVA		-	-		MK	NLK	-					-	NL	=	
Ξ		-	t			_	+		-	-	_			_	8
_	=	-	 		-	=	+					1	_		
+	+	+	+		+	+	+	+	+	*	Y		A		
-	_	_	+		=	-	+		-	=	-		=	-	
P	P	P	P		P	P	P	P	P	P	_	Per	_	P	
+	+	+	+,		+	+	+	+	+	+	+	<u> 1850</u>	+	+	
+	+	+	+	163	4	A	+	3000	+	+	+	_	+	+	
-	_	_	† -		-			+	_	+	+		_	_	
_	+	+	+		_		+	+	8 7 8	+	10		-	+-	
- 13	33	+	197		_		+			+	+	+-	+	40 20	
+	+	+	+		+	+	+	+	+	+	+	+	+	+	
+	+	+	+		+	4	+				4.00000			+	
+	+	+	+	-	+	+	+	+	+	+	+	+	1	+	
+	+	+	+		+	+	+	+	+	+	+	+	+	+	
R	ס	D	D		P	D	D	D	D	D	D	Þ	D	12	
8	5	5	5		12	S	<	5	<	S	S	S	S	3	
P	2	R	R	37	S	S	R	P	D	D	D	0	D	R	-
0.11	ふ	2.0	ス	-	11.14	V:L	0.7	0.0	24	03	Che	Pos	र्र	5	
630	15	13	162		410	Lin	137	1/2/	187	40	13.	100	166	Ľ.]

M.A.: marine agar plus 30% skimmed milk

Sh : short Gr : grayish R : resistant
Coc : coccoid O : opaque S : sensitive
Sl : slender Alk : alkaline Vib: vibrio

Cur : curved Y : yellowish Ps : pseudomonas
Tr : translucent P : polar Fla: flavobacterium

M : mucoid Per : perithrichous Par: paracolor

? : unknown

Table No. 23 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-A

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Pluorescein King! s Pyscianine M.A. + 30% S. Milk Paton's Media Flagellar Stain **Kovacs** Oxidase · Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensiderramycin 10 mcg Livity 0/129 Tentative i.d.

1	2	3	4	5	6	7	8				T	T	T	T	Τ
56	A. M. C. C.	32	SE			Si.	54		T		\vdash	-	1	1	10
_	-	-	-	<u> </u>	_	_	_		Ê	1	T	1	1	1	
	_		1	1						1	T	1	1	1	1
To	Gr	Gr	Gr	9	Gr	Gr	Gr		 	十	T	Ť	†-	十	┪
y	Y	Y	Y	У	Y	Y	У			1		-	1	1	十
_	-	_	_		_		_				T	1	1		T
	_	-	_	1_		_	_				T	1	T		
1	_	_		-	_		_				Τ	1			
_	-		_	-	-	-	_								Ī
	_	-	=	-	_	_	-						É		
-	-	-	-		_	-			-						
_	+	_		_	_	-	-								1
<u>y</u>	y	Ş	ÿ	V	Ÿ	Ā	ÿ				T		T	Ī	
-	-	-	_	_	-	_	-		•						
-			-	-	_	-	_		8					1	
+	+	+	+	+	+	+	+								
+	+	+	+	+	T	+	4 -					e e e			
-	1	_	-	1-1	2002 2003 2003	_									
		_	_	-		_	-								
+	<u>+</u>	+	+		+	4	+								
+	+	+	+	+	+.	+	÷								
+	+	+	+	+	- j	+	+				L				
-			_	_	_		_				!		_		
=	Ξ		_	_	_		_	100.000			_			_	
R	12	R	R	R	R	R	8	7							-
<u>S</u> ;	5	S		S	S	2	5				_	<u> </u>	<u> </u>		
R	R	R Th	R	2	P	R	R			<u> </u>	ļ.,		<u> </u>		
· Wi	16	Hu	Flo	1/2	T/u	Ha	1/2						<u>i</u>	l	

. marine agar plus 30% skimmed milk

S1 : slender Fla : flavobacterium
Str : straight R : resistant
Gr : grayish S : sensitive
0 : opaque + : positive
Y : yellowish

Table No. 24 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-B-1

Strain No.
Morphology
Motility
Gram Stain
Colony appearance
Pigment
Oxidative Glucose
Ferm. Glucose
Lactose
Sucrose
Mannitol
Fluoressia
King's Pyocianine
M.A. + 30% S. Milk
Paton's Media
•
Flagellar Stain
Oxidase { Kovacs Paper
Urea
Simmon's Citrate
Growth peptone H ₂ O
Growth marine broth
∫25 [°] C
Growth 37 C
_42° C
Penicillin 2u
ensi Terramycin 10 mcg
ivity 0/129
Tentative i.d.

1	2	3	4		6	7	8	9	0	11	12				
	St St	54 SE	34 St		5h	St	54 CX	Se Cur	Phil	5l Cur	ST.			12 10	12
+	_	_	_		+		+	+		+	+	(3)			
_	-	-			-	_	-		-	-	-	25-27		138 <u> </u>	
tr	ir m	tr m	tr m		ts	tr M	to m	5.	ir m	Lr N	S.M				
		_	_			_		_	_	_		0.000			
_	_	_	_		+	_		_	-						Γ
+	XK	HX	矣		_	KK		+	+	æ	£	10004			Ī
	MK	W	从		-	AK	_	<u>-</u>	_	7	0				Γ
	fix	Ark	MX		_	KK	_	-	-	-) i		Γ
144	AIX	W	W		=	Ш	_	_	_	0	0				
_				- 24	+		1	_	_	[_]	-3				
-	_	=	_		+	_	_			T-	_				Γ
+	+	+	+		+	+	+	+	4	-	_				
-	_	_	-		+	_			-		-				Τ
P.	_	=	_		P		P	P	P	Per	Per				T
+	+	+	+		+	4-	+	+	+	_	-				T
+	+		+		+	+	+	+	+	-	1 -				T
	_	_			_		_	_		-	_				T
-	_	_	_		+				-	+	+				Τ
_	+	+	+-		+	+	_	_	+	+	+				I
+-	+	+	1		+	4	+	+	+	1	+				
+	+	+	+		+	+	+	+	+	+	+				
+	+	+	+		+	+	+	+	+	+	٠ +	•			I
+	+	+	+		+	+	+	+	+	+	: +			garas.	
R	R	R	R	865 8 5 8	2	R	R	2	12	2	R	ļ			
5	5	5	ς	9 9	S	5	S	S	IR	R	R				
S	R	R	R		R	R	R	S	R	R	R				T
div	NIV	MA	NIL		K	Mo	NO.	Vib	1/10	Raw	- Con		T	T	

M.A.: marine agar plus 30% skimmed milk

: sensitive : translucent : slender S1 Fla: flavobacterium : mucoid M Cur : curved Alk ; alkaline Para:paracolon Sh : short St : stout

Ps : pseudomonas + : positive with

gas

Alka: alkaligenes : polar : yellowish

: perithrichous R : resistant

Table No. 25 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-B-2

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg rivity 0/129 Tentative i.d.

Π	2	30	4	5	6	17	Ø	9	10	111	112	113	14	lis.	11
Şζ	3	SE	30	se	37	50	इर			S			Be	52	16
+	+	+	+	+	+	+	Cus +	+	+	+	- desi	+	ALL	ear +	CHI
_	_	1=	-		Ë	1_	+-	Ė	+	Ė	t÷	Ė	Ŀ		-
H	H	H	n.	H	H	H	M	H	H	H	H	H	M	M	M
-	-	-	_	-	0	0	-	-	-	P	0	16	0	0	0
									╬		H	-		一	干
+		<u> </u>		 	-	+	干	<u> </u>	<u>-</u>	+-	 -	Ħ.	干	-	=
_	+		+		+	+	+	+	+	-	+	-	+	+	+
					Ξ.	F		尸	F	-	 -	-	 - -	_	_
			_	_	=	=	=	<u> </u>		-		=	╞	=	-
		F		=	_		-	-	Ϊ-	一	_	-		-	-
=		=		_		_	二	<u> </u>	-	=	 -	=	 -	-	-
	=		-	_		=	-	-	}=-		=	=	<u> </u>		_
+	+	+	+	+	+	+	+	+	+	-+	+	土	+	+	土
ຄ	0	-	-		-	5		_	Ę	_		_	_		
P	P	P	1	ρ	ρ	P	P	P	P	P	P	P	P	P	P
+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	-+	+	t	+	+	+	+	+	+	r	+	+	+	+
_		_		-		_		=	-	_	=	-		-	_
_			<u> </u>		_		_	_	_	=	-	_	_	_	_
_		_	_					_	_		-	-	=	-	-
+	+	+	+	+	+'	<u>+</u> _	+	+	+	+	+	+	_	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4	+	4	+-	+	+	+	+-	+	+	£	+	+	+	+	+
+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+
K	2	R	R	2	2	R	2	R	2	R	2	12	2	R	R
S	S	S	S	2	S	S	S	S	2	S	2	2	S	S	S
977750 S	<u>S</u> :		S	S	S	S	2	٤	2	S	٤	ی	S	\$	2
اطا	(B)	Np.	111	1/2	Vio	4.6	Vib	dit	d.V	div	V.b	4.4	dil	dily	dil

M.A. marine agar plus 30% skimmed milk

S1 : slender R : resistant
Cur : curved S : sensitive
Mo : moist, opaque Vib: vibrio
P : polar + : weak

Table No. 26 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-B-3

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth 42° C Penicillin 2u lensi/Terram cin 10 mcg civity 0/129 Tentative i.d.

41	1 20 5	71	=1	<u> </u>		\overline{a}				1-1		1		
11	3	4	5	6	7	8	9	10	11	12	딅	14	_	
Ca.	並	Cur	डर ८५	Car Car	coc	Car	S	%	35	35	šť	55	_	
+		+	+	+	+	+	+	+	+	+	+	+	_	
-	-		—	_	-	-		_	-				2	
tr m	ないか	XS	52	ケス	C'm	tr m	SA	GM	5 70	SA	52	TS M		•
-	-	_			_		_		-	_	-			. 1-3
	_	_	_`	_		+	_	_		-	+	-	200	-88
AK	AK	AIK	+	关	+	-	+	+	7-	+	-	AM		
AZ	AK	HIL	M	HK	_	_	_	_		-	-	MX		
AK	AK	HK	41.	AK	-	_	-	-	-	-		MK	0 90 18 8 1 1 1 28481	
**	HX	MK	W	HX		-	_	1-	-	-	_	MA		
-	_	_	_	_	-	+	_	-	_	_		-		
			_	_	_	+	_	Γ_	T-	_	_	_ :		
+	—	+	+	4	+	+	1 <u>2222</u>		-	_	+	+		
	-			-		+	-	-	-	_				
P	_	P	P	P	P	P	Per	Per	Per	ler	P	P		
+	+	+	+	1	+	+	+	+	+	+	+	+	*	
4	1+	+	4	+	+	+	+	+	+	+	+	+		
	1=	+	_	1_			-			_		_		
+	1_	Ė	_	+	+	+	+	+	+	+	+	+		
4	+	-	-	 	i —	1	+	ŧ	+	+	1			Г
+	1	+	+	+	+	+	+	1-	1+	+	+			
+	T	1	+	1	+	+	+	+	1+	+	1	+		
+	+	1	+	+	+	1	+	14	+	+	+	+		T
	4	1	1	1	+	+	+	1	1+	1	+	+		T
R	D	a	D	P	D	D	D	D	D	D	2	2		
5	5	S	S	5	S	R	0	0	12	R	2	12		
R		3	9	7	0	10	10	17	4	0	D	D	<u> </u>	
2.19	67	1:6	-	0.5	he	(3	3	8	CZ	ce	QS	A.S		

M.A.: marine agar plus 30% skimmed milk

Cur : curved R : resistant
St : stout S : sensitive
Ps : pseudomonas Ae : aeromonas

Ps : pseudomonas Vib : vibrio Table No. 27 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-C-1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King'a Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Oxidase | Kovacs \ Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensi Terramycin 10 mcg Livity 0/129 Tentative i.d.

T ₁	7	2	1		1	177	Ø	a	Im	1,	1.5	115	Ι,,	1	
Sh	5	130	Buy		2	3	52	There	10	11	12	113	14		4
co	Œ	SZ SZ	Car		ci2	St	Sir	tur	Cus	24	Car	car	LIN		
+	1+	+	+		+	+	+	+	+	+	+	+	+		1
		_	÷		2 -3 2	-	-	_	-		-	_			T
なか	tr	tr	Er		Tr.	Erm	tr	ts m	57	Di No	tr	Tr m	tr		丅
100	-	-	多		Ry	-	_	_	_	_	-	77-5-7	-		-
+	_	_				_	+	-		_	_	_			T
1	AK	AIK	+		+	YIK	-	+	+	+	+	+	+		1
-	AIK	AIK			-	HK	·		_	-	-	_	=		
	AIR	ALL	-			郴	-			-		-	-		
-	AIK	MIL	+		-	拟		-		_	_	-			
+	-	-	-		_	-	+	-	_	-	-	-	_		
<u>+</u>	=				_	-	+	_	-	_	_	_	_		
+	+	+	+		+	+	+	+	4	+	4	+	+		
±	_				_	_	+	_	_	Ī		-	_	90	
P	P	P	P		P	P	P	P	Р	P	P	P	P		
+	+	+	+		+	+	+	+	+	+	+	+	+		
+	+	+	+		+	+	+	+	4	+	+	+	+		
-		-	-		-1		-		_	_	_	_	_		
+	+	+			+	+	+	+	-	_	_	+	+		
+	_	-				-1	+	-1	-	_	_	_	_		
+	+	+	+		+	+	+	+	+	+	+	+	+		
+	+	+	+		+	+	+	+	+1	+	+	+	+	920000	9
+	+	+1	+		- 1	+	+	+	+1	+	+	+	+		
+	+	+	+	1.	+	+	+	+	+1	7	+	7	+	11.00	
RI	2	R	R		2	P	RI	0	2	D	P	P	0		
S!	9	91	R		R	B	5	5	R	R	Q	0			
2	R	R	S	_	s	2	R	ST	5	S	5	5	5		-
7	对	16	10	-1	wh	3	7	10	- 1	17.	<u></u>	7	\		A. 1504

M.A.: marine agar plus 30% skimmed milk

Sh : short Coc : coccoid Sl : slender Str : straight

Cur : curved Tr m : translucent, moist

Py : yellowish Alk : alkaline
P : polar R : resistant
S : sensitive Ps : pseudomonas
Vib : vibrio

Table No. 28 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 3-C-2

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase -\ Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensi/Terramycin 10 mcg :ivity 0/129

Tentative i.d.

70	274	5) 				33 344				<u> </u>	 ,				
١	2	3	4	5	6	7	8	习	10	11	12	13		15	
46	SC Siz	3€ 54	(ci	Cit	ea.	en.	تدع	čer	56. St	1	long	1	ions 19	No.	2000 2000
۲	+	+	+	1	+	+	1	+	÷	÷	+	+	+	1	20
1	-	-	_	_	-	-		-	-	-	-	-	1022	_	461
870€ -0€	4	¥5.	\$1 m	ts *	B. W.	拉车	E S.	5 %	tr N	KX	4.3	1.5	4	tr As	
1	-	-	-	-	إمواط		_		-		-	-	-	-	763 763
+	-		-	-	-	-	_	I	_	,	-	_	-		
_	0	0	-	HZ.	_	H.K	AIK	0	(1)	-	(+)	0	+	+	
_	_	-	-	AK	_	笑		-				-	_		35.
=	-	+	-	MK.		ÁIK	MIK	-	+	+	-		+	+	-
	-	=	_	北	-	MX		=	-	-	Ξ	-	-	-	ë.
_	_	_	-		-	_	_	=	_	_	_	_	-		5550 607
	_				<u> </u>		-	=		_	-	_	_		
+	4-	¥	+	¥	4 -	-	+	+	X	7	Ť	+	¥	7	
							_	-	-			_	-		
P	D	P	P	_	r	î		P	î	P	7	?	17	F	
+	+	+	+	+	+	+	+	+	-+-	7	4-	-	_	r	-
<u>+</u>	+-	+	-j-	Ť	+	+	100	÷	4	7	+		+		
				-			_	-	_		_	-	_		-
	1	+	÷	_	+	+	_	Ξ	+	Ξ	Ť	士	I	-=	
+	T	+		+	20 20		+	<u> </u>	=	+	=	Ē	+	1	_
<u>.</u>	+	+	7-	+	+-		+	+	+	+	+	+	+	+	
+	· ,	1	+	+	-	+	+	+		+	÷	+	T	÷	
+	-	+	+	-	-	-	+-	+	+	+	-	+	-	÷	-
	+	=	-	-	-	=	+	+	+	+	F	+	+	-	
<u>.</u>	a	17	0	n	1	D	7	10	n	ū	a	D	0	D	
<u>[1</u>	0	n	n	n	n	120	11	5	5	5	E.	0	11	C	-
<u>S</u>	9	3	3	5	5	0	0	R	0	100	5	5	17	5	_
R	K	1	X	n W	12 V	1/2	12	17	7	11	U	1	04	1	-
3	Ke	16	3.3	1/2	40	1/2/2	1Vic	16	160	X	14	He	XA	X	

M.A.: marine agar plus 30% skimmed milk

Coc	1141	coccoid	Tr	*	translucent	R	•	resistant
S1		slender	M		moist			sensitive
Str	_	¥	+			Ae	•	aeromonas
Fil	:	philamentous	Alk	:	alkaline	Fla	1:	flavobacteri(a
			W		mallord ch	Do		neaudomonae

Bro : brownich Y : yellowish Ps : pseudomonas Opa : opaque P : polar Alk: alkaligenes

Table No. 30 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 4-A

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase -\ Paper Urea Simmon's Citrate Growth peptone H2O Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg :ivity 0/129 Tentative 1.d.

1	2	3	4	5	6										
R1	61	H	61	61	41						33 18				
+	+	+	+	+	+										
		1	I												
31X 1M	3 *	5M	SM 14	5m	Sia.						50 10)
У	Y	Y	Y	Y	Y	2000									
			-	:-3	-										
÷	-		+	-	+										
_	_	-	-	-	7							85			
+	_	-	+	-	+			9	1 22						
+	_	-	-	-	1										
		_	-									8			
_	_	_		-	-							58			
P.+	7+	9+	7+	P+	0+										
		-	-	_	-			2000							1862 1968
9	P	P	P	P	7										
+	+	+	+	Ť	+										3
+	+	+	+	-4-	+								0.88500		233
			-	-	-				28 28						
I	-	-	1	+	-										
+	+	+	T	+	+										
· + -	+	+	+	÷	+						1				L.
+	+	+	t	+	+		Ľ								
+	+	+	+	+	÷								1_		
+	+	T	T	+	+				20	1_				1_	
R	R	R	R	R	R					2	L	_	ļ		
R	R	R	R	R	R										
R	R	R	R	R	R										
Fla	Plu	Fla	Ha	Th	Fla	<u> </u>	1					1	1.	1	

M.A.: marine agar plus 30% skimmed milk

: long

: hydrolized with pigment production

: late positive

fil: filamentous

: mucoid

: smooth Sm

Fla : flarobacterium

: yellow

M

: resistant

Table No. 31 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 4-B

Strain No.	1234
Morphology	अ अ St औ का
Motility	++++
Gram Stain	
Colony appearance	to to to to co-
Pigment	
Oxidative Glucose	
Ferm. Glucose	+ + + +
Lactose	
Sucrose	
Mannitol	
King's Fluorescein	
Pyocianine	
M.A. + 30% B. Milk	
Paton's Media	
Flagellar Stain	PPPP
Kovacs	+ + + +
Oxidase $\begin{cases} \text{Kovacs} \\ \text{Paper} \end{cases}$	+++
Urea	
Simmon's Citrate	
Growth peptone H20	
Growth marine broth	+++-
(25° C	++++
Growth 37°C	++++
42°C	++++ +
Penicillin 2u	RRRR
ensi Terramycin 10 mcg	5555
:1vity 0/129	5 5 5 5
Tentative i.d.	4.6 1/6 1/6 1/6

M.A.: marine agar plus 30% skimmed milk

S1 : slender Vib : vibrio

Cu : curved † : late positive

Tr : translucent R : resistant

Co : colorless
S : sensitive

Table No. 32 Biochemical and morphological characteristics of Gram negative bacilli at -Tallaboa bay. Station 4-C

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30%, 8. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u whisi Terramycin 10 mcg trit, 0/129 Tentative i.d.

4	2	3		5	ď	7	8	q	10	Ti l	12	13			
1	135 K	APP.		1224	27 27	رخ	5 m	SE SL	5 h	×	34	53			
+	* +	*		+	9t +	5b	75	+	75	St +	St +	+	- 35 18	ŝ	
										1	_	-			
t _r	tc.	Ŀ	:	tr	15	15	tr	15	tr.	1.5	£	许从			F
<u>*</u>	<u>*</u>	1 1		<u> </u>	×	2 1	<u>M</u>	-	_	-	* 1	*		一	†
_	_	_		_	_	-	_	_		-		-		<u> </u>	┪
AK	MY	AIK	_	AK	MI	聚	Liv.	0	AK	AUZ	AV	(£)			T
At/	4.V	AIX		AIX	MV	MV	W	<u> </u>	UK	献	聚				T
ML	M	MK		MŁ	MK	WY	WK	-	AIK	LIZ	AIK	+			T
NY	11.1	AK		ALL	MK	ME	AIK	-	AK	HK	AK	+		Г	T
_	_	_	er er	-	-		_	-	<u> </u>	_	-	_			T
_	1999	_	8			_	-	-	_	-	_	-			
·j.	+	+	1.57	4	+	+	+	+	+	+	+	+		Π	
				-	-			=	_	_	-	-		Г	
P	P	P		P	P	P	P	P	2	P	7	7			
+	+	+		+	+	+	+	+		+	+	777 E F		Γ	T
+	+	+		+	+	÷	+	7-	+		+	+-			Γ
	_	+		+	+	+		-		-	-				
+	+	+		+	+	<u>+</u>	<u>+</u>	_	+	+	+	+			
_				-	-	-	_	-	-			_			
+	+	+		+	+	+	+-	+	+	+	+	+		L	
+	÷	÷		+	+	+	+	+	+	+	+-	+			
+	+	+_		+	+	+	+	+	+	+	+	+			3 3
+	+	+		丁	+	+-	+	+	+	+	+	十			L
R	R	R		R	R	R	R	R	R	R	R	R			L
S	3	S	8	S	3	\$	5	S	8	5	5	S			
R	R	R	_	R	R	K	R	R	R	R	R	9			
(A)	2.9	6%		SIN	10	511	RID	No	13	13	(B)	172	5,000000000		

M.A.: marine agar plus 30% skimmed milk

Sh : short + : positive with gas

+ : positive with gas Ps
P : polar Ae

Ae : aerobacter Vib : vibri

: pseudomonas

Cur . curved # : weak
Tr : translucent R : resistant
M : moist S : sensitive

Alk : alkaline

: stout

St

Table No. 33 - Biochemical and morphological characteristics of Gram positive micrococci at Tallaboa Bay. Station No. I

El	82. 8					05000000000	101 - 101 E				350000 5000 C	<u> </u>	100000000	988 1488//	125,550	94 <u>– 28</u>	VII 1818	(633 G				
Strain No.		2	3		5 6		8	9	10	11		15	16		18	19	20				24	25
Gram Stain	+	+	+	-	- +	-	+	+	+	+		+	+		+	+	+				+1	干
Oxidase	7	+	+	-	- +		+	+	+	+		+	+		+	+	+				-	エ
Catalase	+	+	+	-	- 4	-	+	+	+	+		+	+		+	+	+	j Estetak			F	干
Simple Nitrogen Media	-		-	-	7	-	 	_		F			-		_	-					=1	
Mobility & Morph	Bel	Bel	Bet	В	t Be	t	Bel	Bel	Bei	Be		B.	Bet		Bel	Bet	Bet			į	7	Rel
Ox. Ferm. Glucose		-	-		- -	-	 	-	 -	-		T-	30,400			-	-				-	_
Glucose aerobic	-	_	_	-			-	_	_			-	-		-	+				7		
Glucose anaerobic	厂	_	-	-	7-				_				-			_						Ξ
Mannitol		_	_	-]_		_			_			1_							1		_
Maltose					1.		_	_					-			_	_		31			
Arabinose		_					_		_	-			-		_	_				7		_
Galactose	_		_					_					1							1		
Xylase	_			_	7			-	_							_				T.		-
Growth BM broth	+	+	+	7	-17		+	+	土	I		+	1		Ŧ	Ŧ	7			—	F	Ŧ
Growth peptone broth	الشاملطستان	+	+	1-1	SE 1 22		+	Ŧ	+	+		11	丰	1,443	+	+	Ŧ					+
Nitrate reduction					7			1														<u>-</u>
Litmus milk	1				1		_	1					1		_					-		
Gelatin hydrolisis		-			:1=					1]							
Starch hydrolisis			_	7																		
Pigmentation	a	Or	Or	0	Or		Or	a	or	B			a		2	10-	or				Or	Or
Action in blood						1		-	1	+				H	35 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	_	-				_	
lipolysis					1						 									-		
Coagulase	1811(11)				1																-	
Casein hydrolisis	=	+	7		٦.		=	\vdash	+	1+	 		17			丁			-		7	三
Tentative i. d.	MA		Nic	11			ħ.	n	ne	hu		1	nie				+			جوسسر	74	n:
	L	TAC.	· IK	11	W.H.	4	184	नार	LE.	114		1-11	112	1-1	114	11%	1118	-		 	14	74
		أحسر	1			لسل			لبسيا			حابك		1_1								esse w

Ox: oxidative

Or: orange

Ferm: fermentative

Bct: big coccold tetrade

- : nagative

+ : positive

Table No. 33 - Cont.

# 9 ************************************			Y y		·	·	10	-	-	···		عيسوة			برساد			17	8				, e ^{lla}
Atrain No.	<u>_</u>	<u>L</u>	12	72	930	31	32	33	3	53	1					1.		<u> </u>			T-	æ	Γ
Gram Stain			نا	<u> </u>	土土	1	+	+	_ +	- +	-					T		Γ	T		T .		T
Oxidese			1	tl-	-1+	I	+	+	+	-14	•		Π	Π	T		T	Τ	T	丁	1	Г	T
Catalase			+	- +	+	+	+	1+1	+	-17			T		T		T	T	T		T		十
Simple Nitrogen Media			-	-[-	-	-	-		7=	7=	1				T	T	T	1	T	1	1		T
Mobility & Morph			Ĩ.	1 80	10	182	Res	Be#	Z.	t Re	1	T	T		1	T	T	1	1	T	一		T
Ox. Farm. Glucose				1-	_	_	-	-	-	1=	T	1		T	T	T	厂	1	十	t			一
Glucosa aerobia				.T_	-	-	-	=	7	-		Т	Т	 	T	T	T	1	十一		1		十
Glucosa anaerobia	il.			-	-	_	_			1=					1	T	T	1	1	1			一
Mannitol			-	-	-	_	_		7=	T =	T	厂	1		1	十	1	一	一	1	1		-
Maltosa		\Box		_			-					1	T	T	1		1	一	T	十	H		-
Arabinase				1=	-			_					Т		厂	<u> </u>	T	!	十	一			-
Galactosa			_	1	1				7=	1=	<u> </u>			-	<u> </u>	Т	-	1	一	 -			-
Xylase			"[_	 	-	_	_		—	1=	1				一	٣	1	 	!	 			-
Growth BM broth		T	1	1	1	+	+	Ŧ	丁	1	1				 	 	一	一	一	 	-		-
Grwth peptone broth		T	T	1	口	T	+	丰	T	丰					1	-	H	1	一	-			-
Nitrate reduction		T	7=	-	-			=	Ť	亡	-		-	-	-	十	 	-	 	-			
Litmus milk									1				_		 	 	-	-	一	 			-
Gelatin hydrolisis	7	1	二二	二	-	二		丁	1	 	_				 	十		1-	-	-	-		_
Starch hydrolisis	T	十	7						士		-		*			-	H	-	-				
Pigmentation	寸	T	a	a	a	7	2	2	a			-	-			-	-	┢╾	-	-			
Action in blood	十	7	1	30 X											-	-	 	┝	 	-			-
Lipolysis	十	7			-		_		_	三	-			25 1937		H	-	1-	-	 -	20000	-	
Coagulase	十	+	士			_		_	+=			-	_		-	-	_	-	-	-	\vdash	-	,
Casein hydrolisis	十	十	一工	I			#	#	量	亍	-					-		-		-			-
Tentative i. d.	十	十	Ma	V.	71.	-	1/2	- The state of the	ستحي	1						-	-	├-					-
	+	┰		TIK.	TAK.	14	IX.	116	Turk	nic													

Ox: oxidative

Bct: big coccoid tetrade

Form: fermentative

Or; orange

+ : positive

- : negative

Table No. 29 Biochemical and morphological characteristics of Gram negative bacilli at Tallaboa bay. Station 4

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase \ Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u iensi Terramycin 10 mcg livity; 0/129 Tentative i.d.

Γ_{I}	12	3	1	E	6	1-7	18	à		Т	T	Т			7
Sh	Si,		The Cont	54	2%	3/1			-	+		+	+		+
+	+		Car	1	COC	CLE	COZ	Lax	-	╀	- -	+	-	- -	_
E					T	1		-	-	+	+	+-		+	4
tr.	Br	Etm	970	Gr	Br	80	100	-	┝	╀	+	4		- -	+
<u>M</u>	3	1075	-	¢	Br Q	80		-	_	╁	+	+	- -	-	_
	- -	_			0	or	Or	Br	-	-	╀	- -	- -	-{	+
Lill	Ø,	5	AIU	110	1110	110	Air	1/	-	-	+	-	-	1.	1
W.	VA	D	AND AND ADDRESS OF THE RESERVE AND ADDRESS OF TH	ITK	Tu	AIK	HIK	111	-	ļ.,	-	+	-	-	-
	-		AK	VIK	AK		AIK.	AIK	-	╄	╁	+		-	
XX	T		元子	36 80 10		<i>kik</i>	_		_	_	+	-	-	4	_
AK			X	M	RIL	HK	AK	WK	_	-	-	-	4_	-	ļ.
		_	_			\equiv	-	_	// ₂	-	L		4-	1	1
-	=		_	=		-	_	_	_	<u> </u>	-		4.		
+	<u>†</u>	+	エ	+	+	+	+	+		_	ig	_	1	<u> </u>	\perp
-	-		-	듺		그	-			_		<u> </u>	lacksquare	1_	_
P	r	<u> </u>	r	7	1	P	7	?				_	1		$oldsymbol{\perp}$
+	+	Ť	-	#	+	+	<u>+ </u>	+			L		_	_	<u> </u>
+	#	+	+	<u>+</u> -	4)	<u> </u>	$\pm $				_			
=	+	+		-	듸	_	<u> </u>	_			_	1_	_		
+	+	+	+	-	=	<u> </u>	=					L			
귀	=	_	=		=		_:	-		755.75	_	ļ		ļ	_
+	+	#	+	+	+1	+]	+	+	2-4		_	_	_	ļ	
t	+	<u> </u>	+	+	+	<u> </u>	<u> </u>	<u> </u>		(0.5)	_		_	_	
+ ;	+-1	+	+	+	+1	+1	+ -	+				_	<u> </u>		<u>L</u>
+	+	+	+	+	+1	#	<u></u> <u></u> +	<u>- </u>	_				_		<u> </u>
<u>R</u>	K	K	K	K	2	2	2	2	_				<u> </u>	_	
	<u> </u>	$\frac{S}{S}$	<u> </u>	<u>S</u>	5		5	3	_				<u> </u>		
	4	15	K	K	211	<u> </u>	511	4	_						
28/	en	e,	620	5 ³⁰ (4	2 5	<u>(%)</u>	W.S	,"							

M.A.: marine agar plus 30% skimmed milk

Sh : short Gr O : grayish R : resistant Coc : coccoid Alk : alkaline S : sensitive Tr M : translucent + : positive with Ae : aeromonas

moist gas

Br M : brownish moist P : polar Ps : pseudomonas + : weak

Table No. 34 - Biochemical and morphological characteristics of Gram positive micrococci at Tallaboa Bay. Sation I-A

Strain Mo.	1	1	2.	3	4	5 (S	7	8	9					14	15	16	117	18	P		T	T	T	T	T
Gram Stain	4	· H	- .	+ -	£Ŀ	<u> </u>	<u>-</u>	Ł	+	+		T	186		7	100			7	1	7	137	†	+	十	十
Oxidase	4			+ -	F	+ 4	٠,	F	+	4		T	T		+	+	1	+	+	+	┼	十	十	╅	十	+
Catalase	4			٠١٠	-	<i>-</i>		F	+	+		T	1		1	١.		Ħ	+	亡	一	-	+-	╁	╁	┿
Simple Nitrogen Media	-		-1-	- -	-1-				_			T		1	Ľ	Ľ	Ė	亡	亡	+	 	┰	†-	╫	╄	十
Mobility & Morph.	5%	3	نواء	. 5	1 3	14 3	- 3	Ξ,	=	15				1	17	5	=	=	5%	-	0 300	+-	╁	┿	╄	╀
Ox. Farm Glucosa		7-				-1-					_	T		-	 	35	261	120	136	124	-	╁	╀	┿	╀╌	+-
Glucose aerobic		1_		7.	1.	1-	1.	1						-					┼-	H	-	┼~	╀╌	┯	╀	╁
Glucose anaerobic		-	1	٦,	7.	#	1.	1	_							E	Ε	一	=	-		╫	\vdash	╀	╁	╁
Mannitol	-	1=	1	. -	1	- -	. -	.†.	7						-			一	干	Ξ		-	[╀	├	╂
Maitose	1	-	1.	: :	. _	1		#:	_	_							=	E				┝	├	╀	<u> </u>	╀
Arabinase			†		1	1_	†	†	╁								-		F			-	<u> </u> -	┼-		┼
Galactose	_		1-	. -	1	#	t	+	+	7	-		-			_		Ξ	_			<u> </u>	 	 	 - -	—
Xylase			1.	1	1		#	1	+	_	-1				_	-	_		-	_		 	 - -	╄	<u> </u>	╀
Growth BM broth	+	1	+	1	1	+	+	+-	+	#					_	_			-	_		_	 	-	_	
Grwth peptone broth		4			†	+	┪~	_	十	_	-	-			+	+	+	+	+	+		_	ļ	├		_
Nitrate reduction	_	-	 		<u> </u>			+	╅	1	-	-			+	-	_	+	+	_		_				<u> </u>
Litmus milk	_		士	1	-	┼			+	-	╌┤	-	ᅱ		_	_	_		_			_		<u> </u>		<u> </u>
Gelatin hydrolisis		_		上	1_			+-	+	4	+				=	-	-	-	_	-						<u> </u>
Starch hydrolisis				Η	H	H	尸		+	-	-		\dashv	-	=	=	=	=	_	_						
h	7	_	- y	V	仧	15	- V	-	+	; }	+			-		-	_			=						
Action in blood	싀	01	7	1	0,	1	17	1	1	-	ᆛ	-			00	12	X	04	0,	Y					٠	
Lipolysis		Ξ	Ξ	于	-	=	-	=	+-	4	+	-			=	=	=	=		_						
Coagulase	4			尸	-	-	-	尸	+	4	+	-		_	긔	=	=	_	=	_						
Casein hydrolisis	\exists	_	_	干	干	=	=	=	#	4	4		_	_	=	킈	-	_	=							
agas s	뒤	긔	-	1	+	土	+				- -	_		_	+	+	土	<u>+</u>	世	<u>+</u>						
· GITTELITE L. U.	1K	IK	MY	Mic	N _K	MK	Mic	Hi	11	11		_			le	ke	94	14c	He	Mic			50 			

Ox; oxidative

Sh.ch.: short and long chains

Ferm: fermentative

Y: yellowish

Or: orange

St: small tetrads

-: negative

+ : positive

Table No. 35 Biochemical and Morphological characteristics of Gram positive micrococci at Tallabos Bay. Station 1-B

· 2					·		*	7å	M Mariera			az I	*: 	s sa 32	:: :::::::::::::::::::::::::::::::::::	iš			ini titi	,11.1 11.1	* (NA CONTRACTOR OF THE PARTY OF T
Strain No.		2	3	4	5	6	7	30	9	10	In	12	13	14	15	16	17	18	19	20	21	22	23	24	
Gram Stain	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Oxidase _	1	+	1+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Catalase	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	
Simple Nitrogen Media	F	-	-	=	-	-	-		-	-	-	-	_	-	_		-	1	_	_	-	_	_		9
Mebility & Morph.	SI	Sh	51	Sh	SA	<u>S</u> h	5.		53	51	Sh	56	Sh	Sh	525	15	Sh	57	Sh	₹b	S.A	164	7,	5 b	7
Ox. Ferm. Glucose	F	4	E	F	r		4		t	F	7	F	F	Ţ						-avecar		2			
Glucose serobic	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+	+		
Glucose anaerobic			 	_	_	_	-		-	_		_	_	-	_	-	-		-	_			_	_	-
Mannitol	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Maltosa	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	
Arabinase	-	_	-	_	-	_	_		_	-	-	_	_	_	_	-	-	_		_		-	-	_	
Galactosa	=	-	=	=		_	-		-		-	_	_		-	_		-	-	-			-		
Xylase	_	_	-	-	_	-	1	to portion	-	-	4	_	-	-		_	(0		_		-				
Growth BM broth	干	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Growth peptone broth	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nitrate reduction		1	1	_		+	_		-	-	-	_		-	-	-	=	-	=	1	_	-	-	_	
Litmus milk	-		-	-	-	=	_		-		_	_	-			_	-	-			-	-	7	_	
Gelatin hydrolisis	1	-	-		-	-	-		1			-	_			-		-	_	_	1	1	-	-	
Starch hydrolisis	-	-	-	-	-	-			-	-		-		-				-	-	-	-	_		-	
Pigmentation	Y	Y	Y	Y	Y	Y	Y		Y	Y	Y	Y	Y	Y	y	Y	Y	Y	Y	Y	У	Y	Y	Y	
Action in blood	-		1		-							-		-	1		-		-	-	_	_		-	
Lipolysis	-		-	-	_	_	_		-	=			_	-	-	_		-	_		-			-	
Coagulase	-	-			-	_	_		-		-		_	_	-	_	~	_	_	-	-	_	_	-	
Casein hydrolisis	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Tentative i. d.	Hic	Mic	Mix	tic	lie	the	Mic		HK	The	Hi	The	Hix	the	Mic	Hic	Hic	The	Mil	De	The	Hic	He	Mic	
										NAME OF THE PARTY													ST01 275		
•	100	ģ	11170-00-1			100,000	\$134.803		6947 S	90,900	6 A85 3	AL AVAILABLE			5 - 58 VI - 3		3)			A PARTIE			- 100		

Ox: oxidative

Sb: spherical bunches

Ferm: fermentative

Y: yellowish

F; fermentative

+; positive

-: negative

Table No. 36 - Biochemical and morphological characteristics of Gram positive micrococci at Tallaboa bay. Station No. 2

97			,	·							_				_	<u> </u>		-	-:-T					-	
Strain No.	旦	Z	3	4	5	6	7	8	9	10			13	14	15	10721			19	20	21	22	23	24	2
Gram Stain	+	+	土	±	土	+	±	土	+	+			土	+	+				±	±	土	+	±	+	+
Oxidase	土	+	+	+	+	+	+	+	+	+			+	+	+				+	+	+	+	+	+	+
Catalase	+	+	+	+	+	+	+	+	+	+			+	+	+		13-11 13-11		<u>+</u>	+	+	+	+	+	+
Simple Nitrogen Media	_		_	_	_	1	-	1	1	1			-	-	1				-	-		-	-	-	_
Mobility & Morph.	77	74	54	33	56	34	37	35	5	5%			50	55	38				56	5%	13	56	5%	56	56
Ox. Ferm. Glucose	_	_	_		-	-	-	-		_			-		ĺ			S			F	-	-	_	_
Glucose aerobic	_	_	-	-	-	_	-		1		1000		-	_	-				-	-	+	-	-	-	-
Glucose anaerobic	_	-	-	=	-	_	-		-	-			-	-	-					-		_		-	-
Mannitol	-	-	_	-	_			1	-	-			-	-	-				-	1	+		_	_	_
Maitose		_			-	-	-	-	***				_]				-	_	+	_	_		-
Arabinasa		_		=	=	=			-	-			-	-	-				-	-	+	-	_		-
Galactosa	_	_	1		_	_		-	-	_		-	_	1	1				-		±	_	-	-	-
Xylase	-	-	-	-	_	=	-	-	-				-		Π	E. 191			-	_	±	-	=	-	-
Growth BM broth	+	+	+	+	+	+	+	+	+	+			+	+	+				+	+	+	+	+	+	+
Grwth peptone broth	+	-	-	_		-	-	_	_	+			-	1	_				-	-	±	-	-	-	-
Nitrate reduction	_	-		_		-	_	-	-	_			-	-	7				-	-	=	-	-	-	-
Litmus milk	-	_	_		_	_		-		-		Γ	-	_	-				-	Ξ	-	_	-	_	-
Gelatin hydrofisis	-	_	-		-	=		-	_	_			-	-	-				-	-	-	-	-		-
Starch hydrolisis	_	-		_	_	_			-	_		Г	-	_	-	Г			-	-	-	-	-	-	-
Pigmentation	y	7	7	¥	y	Y	7	>	У	y			Y	У	y				y	Y	Y	У	Y	Y	У
Action in blood	-	É	_	-	_	_	-			_			-	_	_				-	-	-	-	-	-	-
Lipolysis	=	=	-	=	-	-	-	-	-	_		T	1=	=	-					=	-	=	-	F	_
Coagulase	_	=	-	=	-	=	-	-		_			-	-	-				-	-	-	F	-	=	-
Casein hydrolisis	+	+	+	+	+	+	+	+	+	+		Г	+	+	+		<u> </u>		+	+	Ŧ	+	+	+	+
Tentative i. d.	Mic	Mu	Mic	MK	_	_		Mx	Min	Mic			Mic	-	Mic				the	Mix	the	He	Mic	tik	Nie
39	10,000																L				L	L			L

Ox : oxidative

Sb: small bunches

Ferm : fermentative

F: fermentative

Y : yellowish

Sh. ch.: short chains

Table No. 37. Biochemical and morphological characteristics of Gram positive cocci at Tallaboa Bay. Station No. 2-A

	-	Т	7-	T	T	—		~	~~	,		,	-		,		_	_			Jeve		S.		
Strain No.	μ	12	. 3	14	5	16	7	8	19	10	11	12	13	14	15	16	12	18	19	20	21	22	23	94	223
Gram Stain	土	土	址	土	土	土	上	1+	+	土	+	+	+	+	+	+	+	+	+	+	+	+	+		13
Oxidese	+	1+	1+	1+	1+	1+	1+	+	+	+	+	+	+	1+	+	+	+	+	+	+	+	+	+		-
Catalasa	+	+	+	+	+	+	+	+	+	1	1	+	1	1	丰	+	1	T	1	1	1	1	Ŧ		
Simple nitrogen Media	-	-		-	-	[-	_	1=	-	-		_		=	_	-	_	=		_	_	-			-7-1
Mobility & Morph.	F	1=	B	B	=	7	B	F	=	B	=	=	=	=	=		=	=	=	=	=	=			
Ox. Ferm. Glucose	I	£	F	+-	=	F	F	Ŧ	F	4	F	Ŧ	F	5	F	F	F	B	β ∓	B	B	B	B F		
Glucose aerobic	+	+	1	丰	+	片	+	+	+	1	1	+	+	+	+	+	+			+	-	-	+		
Glucosa anaerobic	-	-	-	匚	-	1=		_		_		-	_					_	-			-			
Mannitol	耳	T	工	+	1	+	1	T	+	1	+	+	1	+	+	T	4	1	1	1		+		32	-^
Maltose	I	+	+	+	II.	1	I	1	+	+	1	+	+	+	+	+	+	Ŧ	+	+	+	+[+	日		
Arabinase	7	+	T	1	1	1	+	1	+	+	1	+	+	Ţ	+	+	+	+	İ	+	+		+	-	
Galactose		_			1				\pm	1	-	-		-23				+ 1 +	1						
Xylose	_	_	-	_	_					-						-								\dashv	
Growth BM broth	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+		1	+	+	+		+		1	ᅱ	
Growth peptons browth				_	+	+		_						-			_		\pm	+					
Nitrate reduction		-						_	_									-	1		-				
Litmus milk			2000					_	_										1	Person				-	
Gelatin hydrolisis	+	4	+		+	J				+	4	Ŧ	+	-	Ŧ	1					****	-		一	
Starch hydrolisis				_		_											_							ᅱ	
Pigmentation	Y	V	Y	Or	V	On	a	a	y	V	V	y	Y	V	V	Y	N	0	2	or	1	元	7	\dashv	⊶.∤
Action in blood						_																<u> </u>	5	-	
Lipolysis		-	-	_	_	_					_											\equiv			
Coagulase		_	_						二								_							一十	
Casein hydrolisis	+	+	+	+	4	工	4	口	山	工	口	1	丁	口	口	1	T	口	4	口	丁		1	ᆉ	
Tentative i. d.	HK	Hic	lkc	tic	Mic	lk	Hic.	lic	50	lic	lie	Tic	N	nic	Nic	Hi.	tic	nk.	Hie	Nie	Hic	Mik	ttic	二	
1					1				_							لـــ			14]			

Ox: oxidative

Ferm: fermentative

Sh. ch.: short chains

B: bunches

Y: yellowish

Or: orange

T: tetrads

P: fermentative

Table No. 38 - Biochemical and morphological characteristics of Gram positive micrococci at Tallabos bay. Station No. 2 B

Strain No.		5	6	8	10			150 50				70 4 3 5 (12 4 5						
Gram Stain		+	+	+	+						333							
Oxidase		+	+	+	+												89	
Catalase		+	+		+						33							
Simple Nitrogen Media		-	_								1507.04						5	
Mobility & Morph.		E.	bu	-	64								(1					
Ox. Ferm. Glucose		-	F	F	F													
Glucose aerobic		-	F	F	F	T									3 3			
Glucose anaerobic		-	-						T								1	es ·
Mannitol			F	F	F				7				2					
Maltose		-	F	F	F													
Arabinase		-	-	7-1	1-1				1	1								
Galactose		-	-		1-1				Τ									- 62200
Xylase		-		-														
Growth BM broth		+	+	+	+				alesti				888.298 8		1			8
Growth peptone broth		+	+	+	+				T				12					
Nitrate reduction			-	-	-				T									j
Litmus milk		-	7	-	1-1													
Gelatin hydrolisis		-	-	-	1-1				7	T								8 W 8
Starch hydrolisis					1-1				T					_				
Pigmentation	\top	У	Or	O _L	C,													
Action in blood		-	-		1-1	T		\top										
Lipolysis			_		1_	1			1									465
Coagulase		_	-	-	1	1	\Box									П		
Casein hydrolisis		+	7	7	1+1	1	\Box		\top	1			T	—		П		
Tentative i. d.		Mic	— -	Hie	nic				T									

Ox : oxidative

Y : yelowish

Ferm: fermentative

Or: orange

F : fermentative

bu: bunches

Table No. 39 - Biochemical and morphological characteristics of Gram positive micrococci at Tallaboa bay. Station No. 3

	# <u>21288788</u>	02 VI	N 80	033349		2825		<u> </u>		N 18 .	<u> </u>		0000 DE		389.23	N 182222		5:09:22-35;	: 1555 1555		3 32333	19 1025		• 24	1 39
Strain No.	7	2	3	4	5	6	2	8	9	10	11	12									03461113		18		
Gram Stain	+	+	+	+	+	+	+	+	+	1							2								
Oxidase	+	*	+	+	+	+	+	+	+	+	1	+				2.5	200				T				
Catalasa	+	+	+	+	+	+	+	+	+	+	+	+	10.743											_	
Simple Nitrogen Media	-	-	-	-	-	-	-	-	1-	=	-	-										_	1	一	
Mobility & Morph.	Be.	804	017	7	17:7	de,	00/	94	00	Bei	Bir	927			,						一			一	-
Ox. Ferm. Glucose	-	-	-	-	-	=	F	F	7=	F	7=	F									厂		1	1	
Glucose aerobic	_	-	=	-	-	Ξ	+	7	7	7	7	+				22				-			╁		
Glucosa anaerobic	-	-	-	-		-	-	-	-			_									-	<u> </u>	T		
Mannitol	-	-	[=	-	-	-	+	+	+	+	1	+		Т			Г			Г	<u> </u>	-	十		-
Maltosa	_	_	-	_	_		+	+	+	+	-	*						-			T		T	<u> </u>	
Arabinosa		_					4	1	4	4	4											-	†	一	
Galactose		-	-	_			-	=	-	_	_	-	901						-		1	-	†	 	
Xylase		_	_			_		_	_		_										-	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	一	
Growth BM broth	+	+	+	4	4	4	+	4	4	7	+	+								-	1	1	1	1	
Growth peptone broth		+	+	Ŧ	4	+	+	+	+	+		+					-				 	_	1	\vdash	
Nitrate reduction	-		-	***	_	_		_		_	-										1	-	T	 	
Litmus milk							_			_							-	-				-	\vdash		
Gelatin Hydrolisis	****					_	_				_										<u> </u>	_	+-	-	
Starch Hydrolisis									*				7.0.			_	_	-	-		 	-	+-	 	
Pigmentation	-		-				72	2.			-	Or									 -	-	十	╁╾	-^-
Action in blood	7	-	7		_	_	-	-	1	-	-				_					!	一	-	+-		
Lipolysis					97			\equiv					3				-	-		 	-	<u> </u>	+	┢	
Coagulase										_		-					H	-	-		-	-	十	-	
Casein hydrolisis	=	1		-			=						\$1945 GE					-	-	-	 	-	+	 	\vdash
Tentative I. d.	42	U .,	H -	H:.	H2.	Ha	Ηż	n.	11:-			YK			-		-	-	-	1		-	十	一	
	15	U.	1114	ווייב	TIEC			STAC.	INT	ع ال	1116	11.6		-				\vdash	-	-	-	-3	+	 	
*												لـــا						<u></u>	1	┺	<u></u>	<u></u>	ــــــــــــــــــــــــــــــــــــــ		لـــا

Ox : oxidative

Bct: big coccoid tetrads

Ferm: fermentative

F : fermentative

Or : orange

Table No. 40 - Biochemical and morphological charateristics of Gram positive micrococci at Tallaboa bay. Station No. 3 A

Strain No.	1	2	3	1 4	1 5	6	2	8	9	10	"	12	/3	14	15	16	12	18	19	20			Π		Τ
Gram Stain	1	1	1	+	+	+	+	+	1+	+	+	+	+	+	+	+	+	4	+	+			Г	-	十
Oxidase	±	1+	+	1+	+	+	+	1+	+	1+	+	1	+	4	7	4	+	+	+			_	<u> </u>		十
Catalase	+	+	+	- +	14	+	1	+	1	+	4	+	1	1	1	1	1	İ	+	7			-		十
Simple Nitrogen Media	+	1+	+	+	1	+	+	+	1+	+	+	+	+	+	1	+	+	+	+	+	2788 W				╁
Mobility & Morph	3	57	54	56	57	56	56	F.	5%	56	5%	5	5%	=		-						-			┝
Ox. Ferm. Glucase	F	- i	75	F	F	F	F	F	F	F	F	F	F	56	E	3 <u>/</u>	SA F	3 <u>6</u> F	34				-		╁
Glucase aerobic	F	F	1	F	E	F	F	F	E	F	E	٦	-	F	E		F		F	F		T-42			┝
Glucase anaerobic		-		Ľ	广	仁	广		-	_	_		/			-				_		-	-		┝
Mannitol	F	F	F	F	1	F	2	F	F	F	F	4	-	-	2	_				=					<u> </u>
Maitosa	+	+	1	1	+	1	1	1	-	-			7	-	.	E	۶	F	_	۶		-	_		┡
Arabinase			Ė	Ϊ́	Ľ	7			+	+		+	-	+	<i>+</i>	_		+	+	+					<u> </u>
Galactose										_				_		=		_	-						<u> </u>
Xylasa	+		+	 	=	 			=			-	-	_		_	_	듸		_	_			-	-
2000 	+	+	7	1	+		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+			~"		
Growth peptone broth	-		Ψ.	+	+	+		+	+	+	+	+	+	+	+	+	+	#	+	+					_
100 L		<u>+</u>	Ť.	+	<u>+</u>	+		+	+	+		-		+	<u>+</u>	<i>‡</i>	+	*	_	+					
Litmus milk	+	+	+	+	+	+	+	+	+	+	丰	+	+	+	+	+	+	*	+	+					
Gelatin hydrolisis	긕	-	_			=	=	_	=	=	-	=	=	=	=	=	_	=	=	=					
	=	=	=		-	=	_	_	_	=	_						_			_					
	듸	=	=	-	_		_			=			=	_	_	-	-	_	-	-					
	7	11	M	11	11	1	12	17	11	77		4	11	11	11	17	M	M	77	71					
**************************************	=	=			_			_	_			-	-	-	_	-	_	-	-	-					
Lipolysis		-1	-	-	-	-	-	-	-	-		-	-			-	-		-	-					
2470		_]	-	_	-1		_	_		_	_	-1	_	=1	-	-	-1	_				1			
Casein hydrolisis	_	_			_[\Box	_	_							_				_			一			
Tentative i. d.	18	14	Hic	Mic	Mil	na	lic	lu	lie	nic	lic	lie	lic	tic I	lie	Mu	Mie		Hi	My	ᅥ	ᅱ	寸		
										T												7	_	-	

Ox : oxidative

M: magenta - orange

Ferm: fermentative

S.b.: short bunches

F : fermentative

Table No. 41 - Biochemical and morphological characteristics of Gram positive micrococci at Tallaboa bay. Station No. 3 B

							20-10-20	ěi 	i.										66	74 ₀₄₀ 8		x 3	7 (*) A	*	
Strain No.	1	2	3	1	15		2	8	1	10	111	12	13	14	13	16	T	Π	T	Т	T	T	T	T	T
Gram Stain	14	-14	J	14	14		4	1	1	1	1	1	1	+	T	1	1	Г	十	┼┈	十	╁	╁	+-	+-
Oxidase	F	1+	1	- +	1+		+	14	T	1	1		1	Ė	+	Τ.		1	1	1	╁╴	十	十	┿	+-
Catalasa	+	1	+		15		7	1	1	7	+	1	1	+	1	1	+	-	H	╁╌	-	┿	十	╁	╀
Simple Nitrogen Media	F	T	Ϊ	1_			-	1_		Ė	1	1_	Ė	Ė	۲Ċ	1	t		十	-	+	十	╁	+-	╫
Mobility & Morph.	F	1=	1=	Ę	Ę		7	7	T	=	=	巨	巨	旱	Ţ	-	H	H	十	┼┈	╁	十	┿	┿	┼
Ox. Ferm. Glucase	L	T	1	1_	T		1	1	 	-		上		1	_	亡	-	Н	H	┢╌	+	╁	╁╌	+	┿
Glucase aerobic		1_	1	し	に		Ξ			-	_	1_		<u> </u>	1	1_	 	Ι-	 	┝	-	╁	+-	╁	╀╌
Glucase anaerobic	匚	-	T	工	-		_	 	-	-						T	H			┢	╁	+	╁╴	┿	┾
Mannitol .			L			П						口	団		Ē	匚	一	-	-	-	╁	╀	┿	┼	\ `~
Maltose													臣			己				-	十	┝	┿	╁╌	-
Arabinase							_					-				一			-	┝	-	╁	+-	+-	┢
Galactose	口																			-	\vdash	 - -	╀	╁	-
Xylase	_	_	E	仁	_					1		Ξ				E	-			-	-	├-	╀	╁	-
Growth BM broth	+	+	1	\downarrow	+		+	+		+	+	+	+	7	+	+			-			-	╁	╄	\vdash
Growth peptone broth	+	+	+	_	+		+	+		+	+	+	+	+	+	+			0.512 (6.03	-	-	╁	 -	┼-	-
Nitrate reduction	-	1								_	<u>.</u>		_						-	-	├-		 	-	
Litmus milk						-														┝	┢	-	1	-	-
Gelatin hydrolisis		1	-			-						1						-		-	-	-		-	
Starch hydrolisis	-					十	_		-									-	-	-	<u> </u>	 	┼-	┝	
Pigmentation	12	n	7	2	0,			Cr	-			1			_			77514 6405		_	-	-	╀	-	
		5-5	-	-			~	4	-	_	a	0	0,	0-	<i>O</i> _Y	a		-		-	-	 	╄		-
Lipolysis			_		그	一.	士	러	77											-			╀	-	
Coagulase	_				コ	+	#	1	ᅥ										-	-		-	┝	 	
Casein hydrolisis	寸	+	7	+	+	7.	#	 	一	#	귀			_						-	-	-	╀	-	
Tentative i. d.	~		1	the	-	1	345 W	Yic Y	١,		H.	h.	M.	-	+	+ Hk		100		 -	-	_	+	\vdash	-
6度 明年 500 100 300	쒸	щ	"-	140	<u> </u>	+	4	1/4		"	IIK	i IIC	1714	77K	IIIC	1114	8713			-	-		┼-		
					٠١		I_				l			1						<u> </u>		L	<u>L</u>		

Ox : oxidative Ferm: fermentative

Or: orange t: tetrads

TABLE No. 42

MAYAGUEZ BAY

THE SEA WATER AT THE BOTTOM CHEMICAL AND PHYSICAL DETERMINATIONS OF

المسائك	2014 D 2014 D 2014	00000 3 - 30 mm ×	83	rans w	v 200 - 100 - 140	104 - 10 4 - 1 05 - 105		
Phen mg/L	Trace	1			Trace			
Nitr µg/L	09.0	0.50	0.50	0. 50	1.20	09,0	0.50	0.50
Phosph AgPO4-P/L	0.50	0.20	Less 0.1	Legs	0.50	0.50	Less 0.1	Less 0.1
Total CO ₂	1.49	1.76	1,62	1.49	1.62	1.80	1.36	1,49
Total CO3	1.62	1.91	1.80	1.66	1.78	2.02	1.48	1.66
Temp °C	27.0	26.5	27.0	27.0	29.0	29.0	28,0	28.5
C1/liter (20)	19.35	19.71	19.39	19.57	19.31	19.55	19.77	19.85
%s	34.13	34.76	34.21	34,51	30.62	34.47	34.85	35.00
Total	1.71	2.00	1.91	1,76	1.87	2,13	1.57	1,76
Нď	8.12	8.15	8.21	8.16	8.07	8.16	8,15	8,13
<u>8</u>	5.0	5.0	5.5	5.8	4.0	4.5	4.0	5,3
Station	-	1 A	1 B	1 G	2	2 A	2 B	2 C

Total Alkalinity; concentration of bottom sample, direct reading; Total Alk; :0 Temperature in Temp: Hydrogen ton Phenol Chlorinity at 20 °C; Phen: pH: Nitrates; Dissolved oxygen in p.p.m.; Phosphates; Nftr: C1/liter (20): Salinity; Phosph: 90:

大田本 一人世界の中でいる

ί_.

TABLE 41-A

COMPARATIVE PERCENTAGE DISTRIBUTION OF CHARACTERISTICS AMONG 205 CULTURES OF MICROCOCI THE CARIBBEAN ISOLATED PROM THE BENTHOS IN J.I.W. (40) FROM ANDERSON, STRAINS ISOLATED PROM THE NORTH SEA AND 155 SEA. MODIFIED

TABLE No. 43

MAYAGUEZ BAY

THE SEA WATER AT THE BOTTOM CHEMICAL AND PHYSICAL DETERMINATIONS OF

(<u>1</u> .044)				- Tay willian in the			8 78 5	
Phen mg/L								
Nitr µg/l	0.85	0.70	0.50	0,40	0.90	0.50	0.50	0.50
Phosph JugPO4-P/L	0.35	0.30	0,30	0.35	0.75	0.30	0.35	0.35
Total CO ₂	1,61	1.70	1.59	1,70	1.57	1.68	1.61	1.54
Total CO ₃	1.76	1.79	1.70	1,85	1.75	1,83	1.70	1,68
Jemp Jemp	26	26	26	26	26	26	56	26
C1/liter (20)	20.38	20.50	20.45	20.40	20.42	20.48	20.39	20.42
2%	35.910	36.108	36,023	35.935	35.978	36.072	35.917	35.973
Total Alk	1.85	1.85	1.77	1.92	1.85	1.92	1.85	1.77
рн	8.15	7.90	8,00	8,00	8, 20	8.15	8.10	8.15
DO	5.6	5.1	5.0	5.2	4.5	4.9	5.2	5.2
Station	3	3 A	3 B	3 C	4	4 A	4 B	2 7

Total Alkalinity; concentration of bottom sample, direct reading; Total Alk; Temperature in °C; Temp: Phenols. DO: Dissolved oxygen in p.p.m.; pH: Hydrogen ion Chlorinity at 20 °C; Phen: Phosphates; Nitr: Nitrates; Salinity; Cl/liter (20): Phos ph:

TABLE No. 44

MAYACUEZ BAY

THE SEA WATER AT THE BOTTOM CHEMICAL AND PHYSICAL DETERMINATIONS OF

	-11-000 PM T20 Ye			1000 FT - 100		::		
Phen mg/L	1		*					I
Nitr µ8/L	1.90	0.90	0.70	0.70	2.20	1,10	0.70	0.70
Phosph #gP04-P/L	0.30	0.20	0,10	0.10	0.09	0.09	07.0	0.30
Total CO ₂	1,67	1.57	1,57	1.63	1.87	1.57	1,57	1.57
Total CO ₃	1,78	1.75	1.75	1.82	1.89	1.55	1.75	1.75
Temp	26	26	26	26	26	26	26	97
C1/liter (20)	20.31	20.31	20.31	20,18	20.05	20.31	20.30	20.32
2%	35,788	35.780	35.768	35,555	35.351	35.781	35.762	35.791
Total Alk	1.85	1.85	1,85	1.92	1.92	1,85	1,85	1.85
ьщ	8.00	8, 25	8,22	8.22	7.60	8.25	8,25	8.20
8	5.2	3.7	3.6	3.7	2.5	3.7	3.6	3.7
Station	1	1. A	1.8	1 C	2	2 A	28	2 C

Total Alkalinity; concentration of bottom sample, direct reading; Total Alk; Temperature in °C; Temp: Phenol pH: Hydrogen ion Salinity; C1/liter (20): Chlorinity at 20 °C; Phen: Nitrates; Dissolved oxygen in p.p.m.; Phosphates; Nitr: Phosph: . 00

Table No. 45 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u lensi Terramycin 10 mcg civity 0/129 Tentative i.d.

1	2	3	4	5	6	7					Ĺ				
36	se Sk	St.	324 St	sh st	54 80	58 Str									
+	+	+	÷	i	+	+-					1 .				
	-	_		-		_				1000					8020
Er M	tr	\$1 M	42	**	51	ts.	6 6								
	-		—	-		-	A 500 100 100 100 100 100 100 100 100 100		ii						
÷	AK.	ÄK	MK	+	舭	-									
	AIK	AIK	MY	-	XIL.										
	AIK		MX	_	XIL	-				L.					
-	MX	MY	以下	_	AX									1_	
_	YIK	XIX	MK		W	_									
-	-	-	-		-	-			<u> </u>			L			1_
	—	_	_	_	_	_					1_	<u>L</u>			
†	1+	+	÷	+	4	} -					1_			1_	
_	_	_	_	_	_	_				<u> </u>					
P	P	P	P	P	P	P								1_	
+	+	+	+	+	+	+				<u> </u>			1		
+	+	+	+	+	+	+							L		1
		_		+						<u> </u>					
+	+	+	+	+	+ 1	+		201				<u> </u>	1		1
+	1-	-	_	+	_	二				<u> </u>	1_			<u> </u>	1
+	+	+	+	4	+	+			_	$oldsymbol{\perp}$	1_	_	_		\bot
+	+	+	+	+	+	+					1_	1		\perp	\perp
+	+	+	+	+	+	+	<u> </u>	L	<u> </u>	8			\bot	1	┸
+	+		+	_	+	+			<u> </u>		V	1_	<u> </u>		4-
R	5	R.	R	S	5	R			1		_				1
A	5	S	R	S	5	R					_	-			
R	R	R	R	R	R	R						i			

M.A.: marine agar plus 30% skimmed milk

S1 : Slender

R : resistant

St : stout (+) : late

Str : straight
Tr : translucent

Ps : pseudomonas alk: alkaline

- positive

M : mucoid moist

S : sensitive

P : polar

Sh : short

Table No 46 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 1-A

						name.	<u> </u>	r- <u>-</u> 1		<u> </u>		1			
Strain No.	1	2	3	4	5	6	7	8							
Morphology	35	St.	St. 56-	Sa	SR	Str	52 36	50 545							
Motility	+	+	+	+		+	+	+							
Gram Stain		_	_	0 	-	-	-	-							
Colony appearance	tr	gr Gr	m Qr	n gr	M	ar	45	ar ar							
Pigment		_	-	, ,	Y	_	-	<u> </u>							
Oxidative Glucose		ı	1	_	-		-	+							
Ferm. Glucose	_	AK	AK			_	-	-							
Lactose		XX	XX	1	1	_	_	_							
Sucrose	-	W	MX	_	_		_	_			-				
Mannitol		NK.	MX			-	-	_							
Tl	-	_	_	-	-	-		<u> </u>							
King's Pyocianine		_		_				_							
M.A. + 30% S. Milk	+	+	+	+	+	+	+	4							
Paton's Media		=	_						\dashv			1		\Box	
Flagellar Stain	P	P	0	P		p	p	p	一十		1				
1000	1	+	+	+	+	+	+	+	十	+	+	 			
Oxidase { Kovacs Paper	1	+	+	+	+	+	+	+			+		-	-	
		_			-	<u>.</u>			+	+	+		-		
Urea	+		+	.5_		+	+-	+	+		┪	1			
Simmon's Citrate			=		1.			-	+	+	+		-		
Growth peptone H ₂ O					T			+	\dashv		-				
Growth marine broth	-	Ι.	+ -	+	+	-		+		-	+		 	$\vdash\vdash$	
∫25 [°] C		+		-+-	4-	+	+	+	_	+	_		<u> </u>		
Growth 37°C	+	+	+	+		+	+	+	_	_		<u> </u>			,
42° C	+	+	-	+		+	+	ナ							
Penicillin 2u	R	R	5	R	R	R	2	2			ļ				
Sensi Terramycin 10 mcg	R	5	S	5	S	S	R	R							
o/129	R	R	R	R	R	R	R	R	8						
Tentative i.d.	V.	W.	2.1	S)	\$	3.10	6.9	3.3							

M.A.: marine agar plus 30% skimmed milk

S1: slender Y: yellow S: sensitive
Str: straight Alk: alkaline Ps: pseudomonas
Tr: translucent P: polar ?: xanthomonas

1 : mucoid ± : weak

M : moist, mucoid R : resistant

Table No. 47 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 1-B

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannito1 Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase -Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u lensi Terramycin 10 mcg :ivity 0/129 Tentative 1.d.

1	2	3	4	5	6	7	8			100					
37.	Section 2	52.54	se Sh	Sh St	\$5000 E	SU SIr	56 St								
+	+	+	+	+	+	+	+		19120-190 						
	+	-	1	-	1	•								- 2	
M	M	M	Mg	Mg	M	M	M								
-	-	1	-	=	1	-	_	XX							
_		_		+		_	-								
-	HK	+	_	_	ARK	+	_		-						<u> </u>
_	AUK			_	AK	-	=								
	14	-	-	-	MK										
_	AX		_	=	AKK	-	=								
=	_	_	_	_	_		上				_		_		_
_	_	_	_	<u> -</u>	_	_	=			<u> </u>				ļ.,	_
+	±	+	+	+	+	+	+							ļ	1300
_	=	-	二	=		_				├-			_	-	<u> </u>
P	P	P	P	9	P	P	P			-			<u> </u>	<u> </u>	_
土	+	+	<u> </u> +	+	+	+	+		 - -	 	 -		-	ļ.,	┡
土	+	+	+	+		+	+	_	-	├-	-	-	-	-	-
F	_		1=	+		-	-	_		╂-	├	-	-	!	-
土	土		+			=	<u> +</u>			┢				-	-
F	牛	1	- COS - 200	+-	_		邑			-	╆.	├-	-	-	╀
片	+	+	+	+	+	T	+		-	{-	-	╁	-	-	+-
+	+	F	上	十	+	I	1		-		\vdash	\vdash	+	-	+
+	+	土	1	臣	F		上	-	-	+	\vdash	╁╌	T	十	T
F	T D	n		0	1	n	R	\vdash	-	\dagger	十	\vdash	T	t	+
人又	6	a	10	5	S	5	R	\vdash	 	+	T	-	十		1
R	10	8	P	P	2	R	D	\vdash					\vdash	1	1
2	77	120	011	既	17		位		\vdash	+	-	 	+	-	1

M.A.: marine agar plus 30% skimmed milk

Sh: short P: polar
St: stout R: resistant
M: moist mucoid S: sensitive
Alk: alkaline Ps: Pseudomonas

(+): weak Mgr: moist, mucoid graysh

Table No. 48 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 2

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Pluoresceir King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovaca Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg tivity 0/129 Tentative i.d.

	7	-		y	7	17	0		Γ		Γ-			(H 1996)	
1	2	3	4	5	60	50	8					_			-33
56 36	S.	SF.	36	355	क्षेत्र	30	38			<u> </u>	<u> </u>				
÷	_	+	+	+	+	+	+								
-			-	-		_	-								
Mar	M	tr	#0 4r	br	M	M	M								
-	Py	-		Br		-	-								St.
+	_		+	+	+		HX.								
	_		_	_	_	-	AIX								
	_		_	-			AIK	٠						87 3	
_		_	_		_	_	AK							20.000	
-	_	_	_	_	_	_	AK			Г					
-	_	_	-	-	-		-							1	
_		-		_		-	-								Г
+	_	+	+	+	+	+	+				T				·
_	-	-	_	-		-									
P	-	P	P	P	P	P	P								
+	+	+	⊢	١.	}-	+		3							
+	+	+	+	+	+-	+	+			m					
+	+	+	+	_	+_	+	_								
÷	+	+	+	+	100	+	+								
+	7	=		+	-		+								i i
+	+	+	+	+	+	+	+				Г				
1	-		_	_	_	-							Г		
+	-	+	+	+	+	+	+								
+	-	+	+	+	+	+									
R	9	R	2	R	Q	R	S						1		
R	5	2	R	2	R	R	S		:3)(ñ:			T			-
R	R	R	R	R	p	7	R		019/05/49	Τ		T	1		
21	Cla	1	政	20	ST ST	TO TO	CIN		55. cervie			T		 	

M.A.: marine agar plus 30% skimmed milk

M : moist, mucoid P : polar Fla : flavobacterium

M : molst (+): weak

Gr : graysh R : resistant
Br : brownish S : sensitive
Alk: alkaline Ps : pseudomonas

Table No.49 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 2-A

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose ... Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensi Terramycin 10 mcg ivity 0/129 Tentative i.d.

1	2	77	4	5	6	7	8	Г	T		İ	1	Π	[
	APPROVATION OF THE PROPERTY OF	50 5#									5		H		
+		+	+	+	+	+	+	H	 		-	一	5. 5	-	-
	-	 		-	_	_	_	 		 	-	 	╁		-
tr	Lr	ir	tr.	Er m	tr	tr M	to	-	<u> </u>	 			 		
<i>M</i>	-	<u> </u>		<i>m</i>	-	<u> </u>	~	1	.	-		<u> </u>	<u> </u>		
+	+	+			+	+	+	\vdash		-		-	-		
	_	-	AIL	1_	÷		-		-	H		 			-
	1		AK	_		200			 -	 		 			
_	-		HIK	_	_		-					 	 		
-	_	_	AIK.			_		-							
1		_	_	_		_					02 7800		1 22 S		-
广			_						- 1					1 1985	
+	+	+	+	+	+	+	+				-	<u> </u>	-	. 10	
			_	~						1					
P	P	P	p	P	P	Р	P								
+	+	+	+	+	÷	+	+								
+	+	+	+	Ť	+	+	+				2271	-			
	_		_		1	+	+								
+	-	+_	+	+	+	+	+		-						
+	+	+	_	-	+	+	+								
	+	÷	+	+	+	+	+	L			1				
+	+	+	+	+	上	+	+								
+	+	+	+	۲	+	+	+				2000 100				
+	+	-	+	H	+	+	+	0 19							
R	R	R	5	R	R	9	R		*3	ŝ					
S	S	5	5	R	R	5	R								
R	R	R	R	R	R.	R	R	90 - 500 90 - 500		2270200					
PSE	BI	弘	STI	हर	811	81	K3								

M.A.: marine agar plus 30% skimmed milk

S1 : slender Alk : alkaline
Str : straight P : polar
Tr : translucent + : weak
M : mucoid S : sensitive

R : resistant

Table No. 50 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 2-B

Strain No.	
Morphology	
Motility	
Gram Stain	
Colony appearance	
Pigment	L
Oxidative Glucose	
Ferm. Glucose	L
Lactose	L
Sucrose	L
Mannitol	
King's Fluorescein	L
Pyocianine	_
M.A. + 30% S. Milk	_
Paton's Media	L
Flagellar Stain	
Oxidase { Kovacs Paper	-
Paper	_
Urea	-
Simmon's Citrate	
Growth peptone H20	_
Growth marine broth	-
25 C	
Growth 37 C	-
42° C	-
Penicillin 2u	-
nsi-Terramycin 10 mcg	L
0/129	-
Tentative i.d.	L

			1					(A) (A)	7	L		1	
	2	3	5	S	7	8					1		
	26 26	Se Scr	St Str	X Y	****	Str						_	
	+	+	+	+	+	+			<u> </u>				
		-	-	_	-								
	tr	tr	弘	*3	A 74	Cr N				Π	T		
	-	-	-	_	-	_							
	+	K	-	+	+	展		G.			1		
		AK	_	_	-	AK							
		ЖK	-	_	-	AK							
	-	AK	-	-		HK			Ī				
		AIK	-		-	AIK		ž			T		
		-		-	-	_						, in the second	
			-										
	+	+	+	+	+	+				T			
П		-	1		_					Π			
	P	P	P.	P	P	Р	Transas						
	+	+	+			+-		eserció.					
	+	+	100 40	800	+	+							
	+	+	_	_	±	_				Τ			
-	+	+	+	+	+	+							
	+		_	+	+				Π			13	
	+	+	+	+	+	+				Τ			
	+	+-	1+	+	+	+				T			
	+	+	+	+	+	+							
	+	†	+	+	+	+							
	S	S	2	R	2	S	endental E 1458e		Π				
	S	S	R	R	S	5							
	2	R	R	R	R	R			T		Í		
	II8	811	50	81	b 3	50				Τ			

M.A.: marine agar plus 30% skimmed milk

: resistant : slender R S1 : Pseudomonas ; straight Ps Str : alkaline : Translucent alk Tr : sensitive S M : mucoid moist Sh : short : Polar P

St : stout

± : late positive

Table No. 51 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 3

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u ensi/Terramycin 10 mcg civity 0/129 Tentative i.d.

i	2	3	4	5	6	7	8]	
sh jL	se str	Sh	Sh	Str	Sta St	sh St	Shor	6:18-18 10:0						Π	
+	+-	t	+	+	+	1-		38-35	() L					-	
****	-		-	-	_	-	-			1	1		Т		
tr	tr m	4	tr	tr	tr	u	ur		i		T				
	<u> </u>	-	-	-	_	-		Si .			i ×				
-	+	_	_	-	-		+			T			Ī		
(1)	-	0	0	-	0	(D)							П		
	-	-	-	-	-	-	_								Γ
\oplus		((+)	-	0	(SMG.							
(-	10	(4)	-	0	(+)					T				
÷		<u> </u>	-	-		-	-					:8487			
	_	-	-	-	-					Π			Г		
	+	_	-	-	_	-	-	8				e e	Т		
	-	_		-	-		-						T		
P	P	P	P	P	7	P				1					
+	+	+	+	7	+	-+							T		
+	+	+	+	+	+	+						T			Г
+	-	+	+	+	+	+	-					1	П		
+	-	+	+	+	+	+	+								
	+	-	-	-		-	+	7.45							
+	÷	+	+	T	+	+	+					Τ			
+	+	+	+	+	+	+	+	80				24.5	Г		
+	+	+	+	+	·÷	+									
+	+	+	+	+	+	+									
A	R	B	R	R	9	R	9								
S	R	R	R	R	5	S	5	56							
R	R	R	R	R	R	R	R			Г			1		
let.	Q.I) _e c	ler	S. D.			14.72			Γ	1	1	T		

M.A.: marine agar plus 30% skimmed milk

S1 : slender R : resistant St : stout

Str : straight Ps : pseudomonas + : late positive

Tr : translucent alk: alkaline coc : coccoid

M : mucoid moist S : sensitive Achr: achromobacter alkalige-

: polar Sh : short nes

Aer : aeromonas + : positive with gas

Table No. 52 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 3-A

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi-Terramycin 10 mcg Livity 0/129 Tentative 1.d.

1	2	3	4	5	6	7	8				1				
Str Str	Sh St	27 X	紊	52	24 24	54 50	St. St								
+	+	+	+	+	+	+	+				Г	1			
_	-	-		 			_				T				
Ėr M	tr	tr	tr	₽ TH	tr	tr	Cr m								
_	-		-	 	-		-		8						
-	+				_										
_	- -	_	4	@	Θ	0	0								
_	-	_			_	1									
_		_	+	+	+	+	+					Π			
	-	_		_	-	_	-								
_	-			_	-	-						T			Γ
<u>- va</u>	_	_	-	 		-	-								
⊢	+	₽	+	+	÷	+	+					T			-
-	-	-		_		-	_			ŀ		T			8
P	P	P	Þ	P	P	p	Р				Π		1		
+	÷	1	+	4	+	-}-	4-								
+	-}-	+	+-	+	÷	-}-	+					T			
-	4-		-		_							T			Γ
	+	-	-	7	-		_								
	+		- 22	_		3.						1			
+	+	÷	+	+	'tr	÷	+					1	T		Ī
+	+	i-	+-	+	+	+	+-					i.			
÷	+	Ŧ	+	+	+	+	+				Π	i i	1		
7-	+	+	+	+	+	+	÷							1	
R	R	R	R	R	R	R	R					İ		;	
R	R	R	R	R	R	R	R				Ī		77		i
R	R	R	R	2	R	R	R			Γ			Ī		
W	5	0	ne	Ne	ke	V2.	Dec 1	_			Ī	1			

M.A.: marine agar plus 30% skimmed milk

Table No.53 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 3-B

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase -Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi-Terramycin 10 mcg civity 0/129 Tentative i.d.

1	2	3	4	5	6	7	8								3	
5h	Sh St	St St	Sik Cur	54. 7t	Sk	Si Si	57 50-		 			I				
+	+	+	+	+	+	-4-	+			<u> </u>		L				8.00
_	_	-	-	<u> </u>		-	_									
M	M	M	M	M	М	M	М									
	J	_			,		_							200		
_		+	+	_	+		-	*								
W	(_		_	-		_						***************************************	
AK		-		-	_		-									
Aik	+	 —		_	_	_					L		1			
AIK			<u> </u>	_	-	-	(-		\perp					
-	_	-	-	-	.—											
-			_	Ī_	_		_									
ታ	+	_	+	_	_	+	+						\perp			
-				<u> —</u>	_											L
P	p	p	p	p	P	P	P									
<u>+</u>	+	÷	+	+	T	+	1-									L
+	4	7	+	+	+	+	+-		!							L
	_	+	+	+	÷	<u> </u>										
-	_	+	+	+	- ;-	٠	-		}				.00			
	-	+	+	-	+	_	-		<u>L</u>		_	1				L
+	+-	+	+	-+	+	+	+		<u> </u>			_				
+	+	+	- -	+	+	+	T			1	<u>i</u>	\perp	\perp			
+-	+	+	+	+	-	-	+		<u> </u>			_				L
亡	+	+	+	+	+	+	+					_[_		<u>(64)</u>		L
R	R	R	S	R	R	R	R									1
R	R	S	R	R	R	R	R						_	ä	700	-
R	R	R	R	R	B	R	R									1
N. W	he	60	13	163	183	183	23					}				Ì

M.A.: marine agar plus 30% skimmed milk

Sh : short P : polar
St : stout S : sensitive
M : moist, mucoid Ps : pseudomonas
Alk : alkaline Ae : Aeromonas

(g : positive gas

Table No. 54 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 4

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase { Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg civity 0/129 Tentative i.d.

1	2	3	4	5	6	7	8								
50	sé St	द्रअं	3	SE SE	X	58	St								
+	+	+	+	+	+	+	+						ĺ		Γ
_	-	9433E			-	-	_	283300				1			
trim	Cr m	tr	tr	tr	tr	lir m	tr		į						Γ
	-	-	-	-		-	-					T			T
	-	_	-	5.00	_	_	_	88				T			Γ
=	-	-	_	di-	-	_	-				T		1		T
	-	_	240		-	<u> </u>	-		Г	1					
-	_	_	_	-	_		_					T	T		T
_	-	-	-	-	-	_	_	arazeoa				Τ			
-	_	-		_	-	-	-								Γ
-	_	_	-	-	_		-	210 2		y d	T				T
+	+	+	+	+	+	+	+				T		1		T
_					_	-	_	Messes son						i	T
٩	P	P	P	P	P	P	P				T				T
+	+-	4		1.	f.	+	1-				T				T
+	+	+	+	+	+	+	+			T		T			T
+	+	+	+	+	+	+	+	3.0							Ī
+	+	+	+	+	+	+	+_								Ī
	-	_	-	_	-										Ţ
+	+	+	+	+	+	+	+								Ī
+	+	+	+	+	+	; +	+		8. 8	1	-				I
+	+	+	1	+	+	+	+		į		-		1		1
+	+	+	+	+	+	+	+-								
R	5	R	R	R	R	S	5	8 2012-1010				. 19 6 19 6 h			I
2	5	R	R	K	R	S	S						Ti Si		Γ
R	R	R	R	Q	12	2	R		New York						T
RU	160	QI	ON	and	24	Well.	200			T			j		T

M.A.: marine agar plus 30% skimmed milk

S1 : slender R : resistant
Str : straight S : sensitive

Tr : translucent I : weak

M : mucoid Ps : pseudomonas

P : polar

Table No. 55 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 4-A

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg tivity 0/129

Tentative i.d.

1	2	3	4	5	6	7	8							
Sh	38	St Str	SC	Sh	36	5L 50	SR Str						7	Γ
+	+	+	+	+	+	+	+		arca:					
	_		-	_	_	_	_							
位至	なが	tr	Er M	Cr M	tr m	Si M	tr M							
-		_	_	_	_	-								Γ
-	_			_	_	_	+							
AIK	0		0	AK	0	\oplus								Γ
AIK		_	-	实	_	-								
差	\oplus	_	\oplus	MK	\oplus	\oplus					2			
溪	_	_	_	ALL	1		-							
1		-		_	8 8	_								
-	-					-	-							
+	+	+	+	+	+	+	+							
_	-	_	-			-	—		8					
P	р	P	P	P	P	P	P		8					
+	+	+	+	+	+	٦.	+							Γ
+	+	+	+	+	+	4	+		0.000003					
+	-				+	+ -	+							
+	+	—	_	+	+	+	+-					3 3		Γ
+-	_			+	+	+	+						4	
+	+	+	+	+	+	+	+		8					
+-	+	÷	+	+	Ļ	+	+				is:			
+	+	+	+	+	+	+	+					2.		
+	+	+	+	+	+	+	Ŧ			4.1883 <u></u>				
3	R	R	R	S	R	R	R							
R	R	R	S	R	R	R	R							
R	R	R	R	R	R	R	R		or Associ Codes				1,200	
W	he	Sa	he	O	34	ne	S.	122				33 33		

M.A.: marine agar plus 30% skimmed milk

R : resistant

S : sensitive

Ae: aeromonas

Ps: pseudomonas

Str: straight P : polar Tr: translucent I : weak

M : moist

Table No. 56 Biochemical and morphological characteristics of Gram negative bacilli at Mayaguez bay. Station 4-B

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase -Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg rivity 0/129 Tentative i.d.

1		b7		1	16	6	1 ~		Γ-	7	1			
1	2	3	4	5	6	1	8							
36	For	SU	ST.	3	St	38	il iir	803					0.0000	54 3
+	+	+	+	+	+	+	+			3550	6			
-	_	-	_	-	~	_	-		1					
br.	S'M	G ×	to m	5%	ir F	Or M	tr		İ					
-	-	-	-	-	=	-								
_	-		+	-	YK	ÁK	AIK							
-			_	-	AIL	AK	从							Г
-	-	-		_	MK	MX	张					Г		
(1 4.4.4. 3)	-	_	-	-	ML	MX	AK	33						
-	-	-		_	MK	ALL	KK							
-					-	==	-							
	-				-	_	_							Т
+	+	+-	+	+	+	+	+		ĺ				_	
		_		-	_	-	-							
P	P	P	P	P	P	P	P					20.44°C		
+	+	4	+	+	_	-	+				 			
+	+	+-	+	+	+	+					Γ			
-			_	_			_				Г			
_			+		-	-	_	- 1/2 - 1/3 						
=	_	=	+	-		=								
+	+	+		+	+	+	+							
+	+	+	P30 8		÷	+	+					 		
+	+	+	+	+	+	+	4							
4	+	+	+	÷	+	+	-4-							
R	R	R	S	R	5	R	R							
R	R	R	B	R	R	R	R	133	-					
RI	R	R	R	R	R	Ŕ	R		EWE.					
W	03	Q.V	No.	(3)	03	1	西			-				

M.A.: marine agar plus 30% skimmed milk

: slender SI Str : straight

: resistant

St : stout

Tr

Ps

: pseudomonas : alkaline

: late positi~e

M

: translucent : mucoid moist alk

: sensitive

P : polar Sh : short

TABLE No. 57

RINCON COAST

THE SEA WATER AT THE BOTTOM CHEMICAL AND PHYSICAL DETERMINATIONS OF

			-		,			
Phen mg/L							Si Simbosida	
Nitr µ8/L	Less 0.1	Less 0.1	Less 0.1					
Phosph µgP04-P/L	Less 0.1	Less 0.1	Less 0,1					
Total CO ₂	1,63	1,63.	1.57			*		
Total CO3	1,82	1.82	1,75					
Temp	26	26	25					
C1/1iter (20)	20.52	20.42	20,40					
% %	35,935	35.973	35.791					
Total A1k	1.92	1.92	1.85	6)		100		
PH	8,25	8.25	8.20					
) 00	5.7	5.7	5.5					
Station		2	3					

Total Alkalinity; concentration of bottom sample, direct reading; Total Alk: Temperature in 'C; Temp: Phenols. Hydrogen ion Chlordaity at 20 °C; Phen: DO: Dissolved oxygen in p.p.m.; pH: Mitrates; Phosphates; Nitr: Salinity; Cl/liter (20) Phosph: Table No. 58 Biochemical and morphological characteristics of Gram negative bacilli at Rincon Coast. Station No. 1

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi Terramycin 10 mcg ivity 0/129 Tentative i.d.

1	12	7	1	K	6	7	8	Γ"	T		1	T	1	1	T
33	12	- 34 - 34	32	8	320	SE		-		-	-	+-	╀	┼	\vdash
1 3	+			+	2C	4	56-		-	+	╁	╫		╀╌	 -
Ľ	†:	亡		Ė		-		-	H	H	+	+	-	}-	<u></u>
tr m	trx	tr m	tr	ter	Cr M	tr x	M	-	<u> </u>	╁	╀	-	+-	┢╌	-
		<u> </u>		<u> </u>	-	-	-		1	-	十	+	╁	\vdash	
	†=	仁		1_	Ţ		匸		H	┢	H		+	-	
0	•	(A	(_	0	WK.			H	╁	╁	╁	-	
٣	T_	12			1	_	alk		-	┢	T			1-	
E	-	F	1	+	_	+	alk			十	十	\dagger	十	+-	-
		-		È						十			十	\vdash	┢
1	-		_	_	-	_				+			 		
	1	_		_	_	_			11,111,111,111	十	╁╴			1	
+	17	+	+	+	_	+	+		-	T		+		1	┢┈
-	-	-	_	-	_					2453			 		
P	An	P	p	P	-	Þ	Р			Τ		1			
+	+	+	+	+	_	+	+						Τ		_
+	+	+	+	+	_	+	+				Γ				
_		-	_	-	_	_									
_	-			_		-	+								
ŀ	+	_	_	_	+	-							Π		
+	+-	+	+	+	+	+	+	300							
+	<u> </u>	+	+	+	+	+	+	. 85							
土	+	+	+	+	+	+	+				_				
土	土	+	+	+	+	+	+								
B	R	R	R	2	8	R	S	- 0							
K	R	R	R	D	5	R	8								
K	R	R	R	R	R	R	R								
he	Ac	Ae	he	te	AIK	Ae	居				١.				

M.A.: marine agar plus 30% skimmed milk

S1 : slender

R : resistant

Sh : short St : stout

Str : straight

Ps : pseudomonas Ae : aeromonas

(1) : positive with gar

Tr : translucent
M : mucoid

Alk: alkaligenes
alk: alkaline

P : polar AM : amphitricous

S : sensitive

Table No. 59 Biochemical and morphological characteristics of Gram negative bacilli at Rincon Coast. Station No. 2

Strain No. Morphology Motility Gram Stain Colony appearance Pigment Oxidative Glucose Ferm. Glucose Lactose Sucrose Mannitol Fluorescein King's Pyocianine M.A. + 30% S. Milk Paton's Media Flagellar Stain Kovacs Oxidase \ Paper Urea Simmon's Citrate Growth peptone H20 Growth marine broth Growth Penicillin 2u Sensi-Terramycin 10 mcg tivity 0/129

Tentative 1.d.

1	2	3	4	5	6	7	8						4		
5e 56-	SE	X	32	SO	Se Se	SL	SK SK	S. Complete							Γ
+	+	+	+	+	+	+	+						100000		Γ
=	-		-	-	_	_	-						Τ		T
tr m	tr	to M	prov	Gr.	G M	15	Er			T		1			T
-		-	Ыш	_		_	_								T
=	13 -72	+	+	+	_	+	+								T
	_	-	-	-	<u> </u>	_	-					T	Ī		Ī
	_	-	_	_	_		_				1000	•	1		T
		_		_	_			57					esta index		T
_	_	_	-	_	_		_		Γ		8		T		T
•	-	+	_	-	—6	-	+								
		+			-	-	+						Т		T
+	+	+	+	+	+	+	+				2000	T			T
		+	-	=	_	_	-4-	2 3 5	T						T
P	P	P	P	P	P	P	P	***			Τ		1		Ī
+	+	+	+	+	+	+	4~			T					T
+	+	+	+	+	+	-	4	85			T	T			T
	-		-		_	-	-			T			Т		T
+	+	+	+	+	+	+	+	5							T
	-	+	+	-		+	+				Γ		14		
+	+	+	+	+	+	+	+							5	Γ
+	+	+	+	+	+	+	+	9.056			8357				Γ
+	4	+	+	+	+	+	+								Γ
+	+	+	+	+	+-	+	+			T		T			T
R	5	9	R	R	R	R	R	- 10							
2	S	R	R	R	R	S	5				Τ	T			
R	R	R	R	R	R	R	R				Π	Γ			
N	3	ot	0.0	0	03	á	0.3				1	\vdash	†	\vdash	-

M.A.: marine agar plus 30% skimmed milk

S1 : slender R : resistant
Str : straight S : sensitive
Tr : translucent - : negative
M : moist + : positive
Brow: brownish Ps : pseudomonas
P : polar

TABIE No. 60

GROUPING OF SOME HETEROTROPHIC BACTERIA FOUND IN COASTAL AREAS OF PUERTO RICO

7		interior and the		49	72 84			- F		00 F 00	333	
	Total		. o	24	22	ឧ	56	47	16	88	31	294
	Cyto				80			0	0	2	0	7.7
	Enterob-	Ī						0	0	H	0	
	Vib							m	0	30	Ŋ	38
	Myco					22		4	0	0	0	4
40.64	Achr-	H	0	0	. 0	0	A	8	•	9	0	11
	Aer.	9	0	0	0	Ħ	4	0	0	7	က	31
	2	8 8	~	p-4	on 140000 1201		e liv	2	0	-	0	4
	Flavo	0	٥	н	,-1	0	0	0	0	14	v	22
	Pseud IV	0	ന	6	4	9	13	29	4	'n	0	73
	Pseud III	H	-1	ď	4		φ	2	5	8	01	47
	Pseud II		en .	4	13	2	7	က	en .	Ŋ	7	45
	Pseud I	0	2	O	٥	0	0		4	9	0	13
33.	AREA	RINCON Station 1	2	MAYAGUEZ Station 1-A-B	2-A-B	3-A-B	4-A-B	TALLABOA Station 1-A-B-C	2-A-B-C	3-A-B-C	7-8-4-B	

Pseud: pseudomonas. Flavo: flavobacterium. Aer: aeromonas. Achr-Alk: Achromobacter-alkaligenes.

TABLE No. 61

COMPARISON OF SOME DETERMINATIVE TEST FOR GRAM-NEGATIVE BACTERIA ISOLATED FROM TROPICAL SEAS (RIGHT COLUMNS) AND GRAM-NEGATIVE BACTERIA ISOLATED FROM TEMPERATE SEAS (LEFT COLUMNS)

CITHER HTLY		TIPEA CT	TIPEA	TIPEA	HUGH-L KOV-OX 37°C TIPEA	SEN HUGH-L KOV-OX 37 °C LIBEA	HUGH-L KOV-OX 37°C LIBEA
-	`	1		S I S			
					Alk	idem Alk	
N.A. + N.A.	7	N.A	"1"	+ + HN.A	- + N.A.	1dem N.A. + - + M.A	1dem N.A. + - + N.A
		<u> </u>	1	1			
- 	¥.			+ - 1dem N.A	- idem N.A	- N.A. + - idem N.A	N.A N.A. + - idem N.A
+ N.A.	+ A. M	N.A. +	+ N.A. +	idem + + N.A. +	1dem + 1dem + + N.A. +	+ idem + + N.A. +	Dx 1dem + 1dem + + N.A. +
+ N.A.	+ N.A.	N,A, + N.	+	Idem - + N.A. + N.	1dem + 1dem - + N.A. + N.	1dem + 1dem - + N.A. + N.	Alk idem + Idem - + N.A. + N.
+ ×.A.	M.A.	+ 1dem	idem + idem	1dem + 1dem + 1dem	1dem + 1dem + 1dem	1dem + 1dem + 1dem	Ferm 1dem + 1dem + 1dem + 1dem
- N.A.	- X.A.	N.A	7	1dem - + N.A	1dem + 1dem - + N.A	л 1dem - + N.A	Ferm 1dem + 1dem - + N.A
+ N.A.	+ N.A.	+ N.A.	1dem N.A. + N.A.	+ N.A.	1dem - 1dem + 1dem N.A. + N.A.	- 1dem + 1dem N.A. + N.A.	Fern idem - idem + idem N.A. + N.A.

Pen. Sen. penicillin sensitivity: Hugh-L: Hugh-L media.: Kov-Ox. Kovacs-oxidase test.: N.A. not made.: M.C. no change.: Ox. Oxida-

1 42.77

tive.: Alk. sikaline.

SOLATED CULTURE

62

TABLE No.

V. CONCLUSIONS

Predominant growth of single species of Gram negative bacteria was observed in specimens taken at several stations either at Tallaboa or Mayaguez bay.

Some stations did not produce any growth either of gram negative bacilli of the species studied or of gram positive cocci or of both. It was not possible to isolate gram positive aerobic cocci from the Mayaguez bay or Rincon coast samples in contrast with samples from Tallaboa bay which produced abundant gram positive cocci flora. Some physiological characteristics of the Pseudomonas sp. isolated showed different patterns in relation with the ones reported from isolates taken from temperature seas.

Pseudomonas group III and IV, Aeromonas sp. and Vibrio sp. showed a definite requirement for high sodium concentration to grow in the media tested.

There is a sharp contrast in relation to the biochemical and physiological characteristics of the gram positive benthic cocci isolated from tropical seas and the characteristics of the strains reportedly isolated from temperature seas.

Due to the general lack of knowledge in relation to the ecology and physiology of bacteria from benthic coastal areas in tropical seas and the forseeable utilization of those areas as possible sites of discharge outlets of industrial or thermoelectrical effluents, it is highly recommended that this type of research be promoted and performed prior to the industrial and/or thermoelectrical developments. Also it would be convenient to measure and compare findings after the incorporation of new elements in the coastal environment.

VI REFERENCES

- 1. Baird Parker, A.C., A classification of Micrococci and Staphylococci based on physiological and biochemical tests. J. gen. Microbiol. 30,409-427.
- Desnues, P., Moustardier, G. et Nieto-Gourribon, S. Considérations basées sur l'étude bactériologique de 625 souches de Staphylocoques.
 Revue d'Immunology, Paris. 31, 435-447.
- 3. Subcommittee on taxonomy of Staphylococci and Micrococci. Internat. bull. of Bact. nomen.and taxonomy. 15, 109-110.
- 4. Rhodes, M.E. Flagellation as a criterion for the Classification of Bacteria. Bact. Rev. 29, 442-465.
- 5. Simidu, U. and Aiso, K. Bull. of the Jap. Sec. of Scient. Fish. 28, 1133-1141.
- 6. Bonde, G., J. Studies on the dispersion and disappearance phenomena of enteric bacteria in the marine environment. Rev. Intern. Oceanogr. Med IX, 17-43
- 7. Shewan, J.M., Hobbs, G. and Hodgkiss, W.A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the pseudomonadaceae. F. appl. Bact. 23, 379-390
- 8. Quigley, M.M. and Colwell, R.R. Properties of Bacteria isolated from deep-sea Sediments. Bact. 95, 211-220.

- 9. Hugh, R. and Leifson. E. the taxonomic significance of fermentative versus oxidative metabolism of Carbohydrates by various Gramnegative bacteria. J. Bact. 66, 124-126.
- 10. Society of American Bacteriologists. Manual of Microbiologycal Methods Edit. by American Soc. for Microbiol. Mac Graw Hill Book Co. New York.
- 11. Leifson, E. Atlas of Bacterial flagellation. Academic Press.

 New York
- 12. Leifson, E. Stainning, shape and arrangement of Bacterial flagella. four. Bact. 62, 377-389
- 13. Wiebe, W.J. and Chapman, G., B. Fine structure of selected marine
 Pseudomonads and Achromobacters J. Bact. 95: 1862-1873
- 14. King, Elizabeth, O. Round table. Current trends in diagnostic microbiology. The identification of unusual pathogenic gram negative bacteria. U.S.P.H.S. Edit. by Center for Disease Control. Atlanta, Ga. 1967
- 15. Ewing, W.H. Enterobacteriaceae, biochemical methods and group differentiation. U.S. Dept. of Health. Ed. and Welfare., P.H.S., C.D.C., Atlanta, Ga. P.H.S. Public. No 734 (1964)
- 16. Gram stain. Manual of Methods for Pure Culture study of Bacteria Edit. by Society of American Bacteriologists.
 Biotech Publications. Geneva. N.Y. 1946
- 17. Shewan, J., M. and Hodgkiss, W. A method for the rapid differentiation of certain non pathogenic asporogenous bacilli. Nature . 173, 208-209.

- 18. Paton, A., M. Enhancement of pigment production by pseudomonas.

 Nature. 184, 1254.
- 19. Kovacs, N. Identification of Psedomonas pyocyanea by the oxidase reaction . Nature, 178: 703.
- 20. Zobell, C., E. Marine microbiology Edit. by: Chronica Botanica Co., Waltham, Mass.
- 21. Zobell, C., E. Studies on marine bacteria. I: The cultural requirements of heterotrophic aerobes. J. Marine Res. 4:42-75.
- 22. Zobell, C., E. and Upham, H.C. A list of marine bacteria including description of sixty new species. Bull. Scrips Inst. Oceanoy. 5:239-292.
- 23. Carlucci, A., F. and Pramer, D. Factors affecting the survival of bacteria in Sea Water. Appl. Microbiol. 7:388-399.
- 24. Ramsey, J., S. Ecological aspects of pollution in the Mayaguez bay.

 Technical Completion Report No5. W.R.R.I. Edit. by University of

 Puerto Rico.Mayaguez. P.R. 1968.
- 25. Muñoz, C. A pollution Study of Mayaguez bay. Library of the W.R.R.I.
 University of Puerto Rico. Mayaguez. P.R. 1968
- 26. Sistrom, W., R. Microbial Life. Edit. by Holt Rinehart and Winston Inc. New York. N.Y. 1969
- 27. Tarzwell, C., M. and Gaufin, A., R. Some important biologolical effects of pollution often disregarded in Strem surveys. Reproduced by. Biology of Water Pollution. U.S. Dept. of the Int. F.W.P.C.A., C.W.A-3. 1967

- 28. Nusbaum, J., and Garver, R., M. Survival of coliform organisms in Pacific Coastal waters. Sewage and Ind. Wastes: 28, 1147-1167
- 29. Castelvi, Josefina. Bacteriologia Marina. Ecologia Marina. Edit. by Fundación La Salle de Ciencias Naturales; Caracas, Venezuela. 1967.
 - 30. Mitchell, R. The effect of water movement on lysis of non-marine microorganisms by marine bacteria. Sarsia. 34:263-266
 - 31. Vaccaro, R., P. Briggs, M., P. Carey, C. L., Ketchum B.H. Viability of Escherichia coli in sea water. Am. J. pub. Hlth. 40:1256-1266.
 - 32. Pramer, D., Carlucci, A.F., Scarpino, P.V. The bactericidal action of sea water. Marine biology. Edit. by C.H. Oppenheimer, Thomas, Springfield, Ill..
 - 33. Jones, G.E. Suppresion of bacterial growth by sea water. Marine Microbiology. Edit. by C.H. Oppen heimer, Thomas, Sprinfield, Ill..
 - 34. Liston, J., Wiebe, W. and Colweel, R.R. Quantitative approach to the study of bacterial species. J. Bact. 85: 1061-1070
 - 35. Anthony, E., H. Regional variability of bacteria in North Atlantic Sediments. Marine Microbiology. Edit. by C. H. Oppenheimer, Thomas, Springfield, Ill..
 - 36. Lynn, W.R., Yound Wontak. The ecological effects of sewage in Byscayne bay. Bull. of Marine Sci. of the Gulf and Carib. 10:491-509.
 - 37. Stein, J.E., Denison, J.G. Limitations of indicator organisms.

 Pollution and Marine Ecology. Edit. by Theodore A Olson and Frederick

 J. Burgess. Interscience Publishers, N.Y.

- 38. Colón, Ernesto F. Estuaries, bays and coastal currents around Puerto Rico. Edit. by W.R.R.I. University of Puerto Rico. Mayaguez. P.R.
- 39. Domenech, Rafael A. Sanitary Survey of Tallabos bay. Edit by Public Health Depart. Puerto Rico.
- 40. Anderson, J.I.W. Studies on micrococci isolated from the north sea. J.appl. Bact. 25:362-368
- 41. Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and M. turck Antibiolic suceptibility testing by standarized single disc method. Am. J. Clin. Path. 45: 493-496
- 42. Strickland, J.D.H. and Parsons, T.R. A practical Hand book of sea water analysis. J.C. Stevenson. Edit by Fisheries Research Board of Canada Bulletin 167.
 - 43. Standard Methods for the Examination of Water and Waste water. 12th ed., A.P.H.A. Inc. New York.
 - 44. Martin Dean F. Marine Chemistry. Vol 1. Marcel Dekker Inc. New York
 1968
 - 45.Cerame-Vivas, M.J., Stewart, R.K., Parrish, L.P., Llavona-Freyre, J. and tosteson, T.R. Aspectos ecológicos de la descarga de efluentes industriales (petroquímicas) en la bahía de Tallaboa, Library of the University of Puerto Rico. Mayaguez P.R. 1968
 - 46. Ramos, J.A., Biaggi, J.V., Diaz Piferrer, M. Informe sobre un estudio de la Bahia de Talloboa. Edit. by: The Commonwealth Oil Refining Co. Peñuelas. P.R. 1968

ELECTRON DIGROPH FOURAPHS OF STRAINS ISOLATED FROM THE BENTHOS OF TROPICAL SEASO

HINGERON PICTOPHOTOGRAPHS OF STRAINS ISCIATED FROM THE BENTHOS OF TROPICAL SEAS.

LIEGTRON MECROPHOGOGRAPHS OF STRAINS ISOLATED FROM THE BUNTHOS OF TROPICAL SILL.

S' SIA """1" DENGTOCATARMS SINAINS ESPLATED FROM THE DENGHOS DE ENOPIGAL SEAS."

MAP I

. MAP II .

