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HEQH L AL AND EXPERIMENTAL STUDY OF THE SUPERCH iL FLOW
IN CIRCULAR DR 3
AND THE
FORMATION OF THE HYDRAULIC JUMP IN THE SAME

CHAPTER 1
INTRODUCTION
!1,1- DEFJNITIONS AND_CLASSIFICATION.~ The EBngineering works
dastined to conduct woter from one place to another, are
called water conduits. These, for their study, ore clossified
tnto ftwo groups.:
1. Forced conduits
2, Open chonnels or free conduitis
In the first ones, olso colded pipes, the water moves when
submitted to @& pressure superior to the atmospheric; in the
second ones, the water circulates with o free surface, sub-
mitted to the atmospheric pressure, which can be considered
as constant., So, In the first ones, the cross section of the
céndutt ie completely full of water; in the second ones, the
cross section of the conduit ;5 porticlly ﬁtth water, The 1ll-
mit between one and another type of conduit will be, when,
being the cross section completely full, exisis in the same

ctmospheric pressure, Fig, 1.1
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The differential characteristtc detween the woter movement
by o fnrced qnnduit and by a free conduit is that, in the jﬂttaréa
the cross section of the stream flow is able to change according
to the dynamic conditions present, while, in the forced conduitsg,
the cross section is invariable, for being confined.
The free conduits are clossified according to:
1, Theilr origin
2, Their kind of flow
The free conduits, by their origin, oare classiried into:
natural and gré¢ificial, if they ore product of nature, or if
they ore made by man,
The artificlal free condults can be of open cross section .
or of closed cross section. We hove an example of the first one
in an irrigation conal and of the second one, in a santtary sewer,
in a drain or in on acqueduct,
| The free conduits of closed cross section are classirted into:
rectangular, square, circular, ovotd, horseshoe shape, elliptical,

etc.

1.2 - CLASSIFICATION OF FREE CONDUITS ACCORDING TO THEIR FLOW,-
'—_-‘—"‘—‘———-_ﬁ——_-——-—--—__—-__________‘____—#
The free condutits accoraing to their.flow, can be classified, 4i7f

we look at them from different points of view, that are here

exposzed: |
A.- In relotion to the charocteristics of the stream flow
through time, According to this criteria, the stream flow can
have: ﬂ
.- Steady flow
¢.= Unsteady flow




——————— X3

It is s0id thot a stream flow hos o steady flow, Lir the
charocteristics of the stream Tiow, through time, in o given
peint, do not change, Decling with free stream Tlows, the
characterisitics Gre: the pelocity of the stream flow ond
its depth, 5o thot:

avV 3 d

— =0 — 0
ot at
or in other words, 1f the velocity and the depth, in o glven
cross section, remain tnuuriuhla-thrﬂugh time,
The flow is unsteady, if the characteristics of the
stream flow, velocity and depth, in o given cross secition,

change with time. So:

oV ¢ d
— #0 — #0
ot dt

B.- In relation to the characteristics ol the stream
[low through space. According to this point of view, the

stream flnw con have:
1.- Uniform flow

.=~ VYaried rlow
The stream flow has a uniform flow, 17 in o glven ins-

tant, the velocity and the depth, along the stream Jlow,

remoin constant, or:

Qv o d
2 i —— 2
I s o s



1,4
e s TP I—— 3 A

The flow of the stream is paried, i1f in a given instaont,
the veloclty ond the depth from one point to another, along

the siream flow, vary, so:?

g Vv D d

Z 0
d s g s

According to the criteric (4) and (B), the stream flow

70

in free conduits, can have:

l,~ Steady and uniform flow
2.~ Steady and voried f1ow
3.- Unsteady and uniform flow
4.~ Unsteady and voried flow
 The [low i3 steady and uyniform, if the characteristics

of the streom flow remain the some through time and space,

302
3 V 3 V a d o d
ta : <5 s a t . 13 s
Therefore:
V= constant d= constont

We have an example of this rlow, in practice, in an
outfall ef a soanitaory sewerage thot discharges under a
constant head and that has enough length to estdbltsh a
uniform flow, |

The flow is steady ond varied, if the characteristics
0f the stream flow do not vary with the time, olthough it

does from one cross section to the other, along the streom

flow, so:

m
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_ # 0 s )
g t d s J t & s

#e hove an example of thils flow, in practice, in the

——— =}

# 0

outlet of an outfall of ¢ senitory sewerage thot dischorges
freely in o coast, in other words, that tis outlet is not
submerged in the seao,

The flow is unsteady ond uniform, if the characteristics

of the stream flow vary with the time, although remain

the same in edch cross section, in a gliven instont, along

the stream flow, therefore:

3V y Vv J d. 5 d
——F 0 = 0 —_—F 0 = 0
0 t Jd s o ¢ d s

The flow 1s unsteady aond voeried, i1f the velocity

and depth of the streom flow vary as much through time

as through space, 30!

¢ V oV ) d > d
— # 0 0 —— 40 —— # 0
9t 0 g o t d s

The most frequent flows in the praciice of Hydraulic
Engineering, ore the steady uniform cnd the steady varted,
Beth flows are established in the circulaor conduits of the
drains, |

C. - In relotion to the Reynolds number.- Another
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criteria for the classificaotion of the flow of o free stream
flow is the influence or effect of the inertizl forces in
relation to the viscosity forces,

The Reynolds number, defined by the expression:

V L
MR = 3
where ! E
NH = Reynolds number

&
V = Mean velocity c¢f the stream

Choracteristic length of the phenomenon,

Vo= Kinamﬁttc viscosiiy or the ratio between the
absolute uiscu&ifg,};, gnd the absolute denstty,"’ ,
can be interpreted as the ratioc between the tner ia]l forces
and the viscosity forces.
In effect: the ilnertial and uiscnsity forces are given

by the expressions:

aVv av adv
szﬁﬁ_{;; Ft-‘-‘m; or Ft‘-‘-‘p'i“-;:“
where:
_Fu = viscosity forces
A = considered areo
V = veloctty
x = distance perpeadlcular to the velocity
Fi = inertial force
m = mass
t = time

Y = volume

Both expressions presented in o dimensional may, we will
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The ratio between the dimensions of both forces, is:
LARUIES [v]2
] Pl [V

AR

r ] ]

Toking, os the characteristic lineal] dimension, in this

case, the hydruﬁltc radius, R , or the relation between the
wetted area and the wetted perimeter, and a8 the choracteris-
tic velocity, the mean velocity of the sfream flow, we will

have.:

The characteristic length, in the case of a forced
conduit or pipe, is the diometer, In that case, the hydrou=-
itc rudtus_is?equul to & of the diameter, or:

&Hﬂz g,
D i

Hn =

The expression of the Reynolds number dealing with o
pipe, 1is:
V D

."'"-._-.l—.l.’.
-

R v
In the cose of o pipe (forced condults), the flows are

claosgsified according to the value of the Reynolds number,

into:

m—_—___--__—m
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I, -~ Laminar flow, if NH¢:2,000
2, = Tronsitional ronge, if 2,000::HR<:3,000
J. = Turbulent ylow, if HH)rJ,UOG

In order to relate the experiences with pipes with those

experiences in open channels, we will have:

4 RV RV

(HH)CF = -“Er*-* (NR)CL = S

Therefore:
(Wplop = % (Nplgy
where the subindexes CF and CL mean fnﬁped cendults and open
chonnels, respectively.
As we have seen/?%e above relation, we will hove that
the flow in open channels, will be: |
1,~ Laminar flow, if NR-c:5GO
2.=- Transitional range, if 500<’:HR-¢ 750
3.-.Turbulenr flow, iy HR>-250

Do= In relation to the Froude number.,- The flow of the

streams in the free conduits, also is classified according to

the relation between the inertiagl foerce and the grovity force,
The Froude number con be interpreted as the relation
between the inertial and the gravity forces,.

The Froude number has the expression:
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where, ¢, i1s the intensity of the gravity or thﬁ force with which

the earth ottracts the mass untt,

The ‘inefﬁﬁl ond gravity forces ore given, respectively,
by the expressions:
av gV
Fy=me——— or F, =p¥
at at

and Fg=w"i‘ ﬂrl"g-'-_p g ¥

Expressed in o dimensional woy, we will hove:

(¥ =LF] i 1t ! [ré]::[p}[gq L’

Dividing the first formulo by the second formulo:
(][] 2T
[F 91 [f] [9] 1’
7] f
DINTE

Taking as choracteristic length the depth of the altreom

flow and as characteristic velocity the megn velocity of it,

-

we will have:

The flows ore claoassified, according to the value of the

Froude number, into:
l,- Subcritical flow, 1f HF-(I |
2,- Criticel flow, 1f N = 1
3.= Supereritical flow, 17 Nj.)I

R R R R T e e
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| Hhebuci; and Iater-Bukhmetéf, dgsighutad the expression
szgd » with the nome kinetic factor, which is not anything
- elze than twice ths quotient 0f the velocity hesd divided by
the dsptﬁ of the flow, In effect: |
I

———— = D

= 2| mmene ¢ g

g & < gd 2yg

1

In other words, it represenis twice the relotion between
the kthettc energy and the potential energy of the rlow,

When, in the mass of a fluid is produced g disturbance, or
an aolteration of the balance, this 13 transmitted to ihe rensi-
ning particles, intervéning in the propogation, the gravity,
slastic, superficial ténstan ond viscosity forces, that act
upon the disturbed particles and upon all porticles around thsem.

In the case that these variotions occur und spread in an
ordered way, the propagation mech&ntsm 18 nomed Eggg. aond
according to the intervéning (or predominant) force in the
propagation, are named, in general, gravity, elastic, of
superficicl tension and viscosity waves,

In the Wave Mechanics, the wave celerity, its veloctity of
propagaiion, is given by the expresston:

c'.—.-_.\/'ﬁ‘
when it deals with small grevity waves, which oceur in relqt—
lvely shallow waters, os the waves presented in free comduits,

when there occur momentory changes of the local depth of the

water, Such momentary changes con be produced by the sltergt-
ions or obstacles in the conduit, which causes the displace-

ment of the water over and under the meon surface level, orec-

e e g P e e e U e N R il
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ting o ﬁuve that exerts o gravity force. It should be observed
that the gravity waves con spread upsiream wilth suberitical flow,
but not in the supercritical flow, because ¢>v, in the first
case; and ¢<v in the latter case., So, this posstbiliiy or
impossibility of spreading of the gravity wave can be used Gs

a criteria tn distinguilshing the fFflow of the stream,

As in most of the free condults the efrects e¢f gravity are
the nneé.thut conirel the phenomenon, the similarity low, for
tests or experimenial purposes, should be the constancy of the
Froude number,

According to the (C) and (D) criteria, the flowa in free
condults, con hove: |

l.- Subcritical laminor flow
2.= Subcritical turbulent flow
3.= Supercritical luminaf f1low

h,= Supercritical turbulent flow

1.3~ OBSERVATIONS IN RELATION TO THE CLASSIFICAT HE FLOKS
A O_THE_VARIATIONS OF THEIR CHARACTERISTICS IN TIHE AN,

SPACE .- W®e have seen that, the charocteristics of o flow threnyh

a free conduit, are the veleciity of the jlows arnd tts depth, ~Foik

are time and space functions, So:

V:fl {s, #) d=3’2 (31 t)
then:
oy oV
d¥ = e ds =+ dt
o 8 ot
ad 2 8
gd = =—— (g + dt
g s et
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Having in mind the values of the partial derivations, exposed
above, we will have:

In the steady flow:

gV 3 d
—— = 0 m—
ot J ¢
In the uniform flow:
g V 8 d
s = () e = ()
g s d s
In-the unsteady flow:
gV | 2 d
—_—F 0 ——F 0
d t 2 t
In the varied rlow:
2V o d
— £ 0 ~— # 0
Jd s 3 g
In the steady unifafm flow:
3 vV | > d SV 5 d
—_— = 0 — ) —_— 0 — = 0
at 31; Jd s 35

I we substitute these voalues in the expressions for 4dv

ond dd, we will have:

av = 0 and | dd = 0
Therefore:
Y = constant and d = constant
In the steady varied flow:
oV o 4 a Vv o d
— = — = o £ 0 ——F 0
o t o t 3 8 8 s

e O S SE—
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If we substitute these volues in the sxpressions for 4V

end dd, we wili hgue!:

5V o d
E,i‘;lr — {is 23, — ads
5 & 3 5
s0:
Vo= fj (s) d = f‘? ()
In the unsteady uniform flow:
g V a Vv 5 @ g d
——F 0 ¢ £ 0 —— =0
a ¢ 3 s 8 £ g s

If we substitute these values in the expressions for 4V

and dd, we will have:

2V g ¢
dV = 4 dd = ——= g1

O it 3 ¢

50
V=g, (8) 1= 1, (t)
In the unsteady voried flow:

a v o i g v S d
e # 0 e ¢ #F0 £0
O t o ¢ d s g s

fherefore:
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CHAPTER 2

GEOMETRIZ ELEMENTS OF THE CRO3S SECTIONS OF OPEN CHANNZILS

2.1 = GEOMETRIC ELKMENTS .- Geometric elements of the cross

section of o free conduit or cpen channel are those propertiies

of the section of the conduitl, perpendicular to 1f3 hottom,
which can be completely defined by the geomeitry of the section
and by the depth of the flow.

These elements, that we will define, are the following:

I1,- Depth of the flow, d
2,=- Depth of the vertical section, Yy

.~ WHelied area, A

4.~ Hetted perimeter, p

o= Hydraulic raedius, R

6. Top width, H

7.- AMean depth, dm

.- The depth of the flow is the height of the perpendic-

ular section of the directiorn of the flow,

2,~ The depth of the vertical cection is the hetght of the

pertical -ross section,
The relation between hoth depths is givenr by the formula:
d = y cos 6

In the case of small slopes bhoth depths can be used

. i ¥ M =y o= -
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tndistinctively, becouse the ros 6 tends to 1. Fig., 2.1,

.~ The wetted area 1is the area 0f the cross section of

the flow, perpendicular to its direciion.

4.- The wetted perimeter is the portion of the perimeter o

secition of the flow, perpendicular to its direction, in contac:
with the conduit,

“e= The hydroulic raedius is the quotient cof the divisicr

-

¢f the wetted area hy the wetted perimeter, The relation

be tween the three elements wiil be :

£.= The tor width iz the width of the free surface o7

the flow,

/.= The mean depth iz the quotient o7 the divizion of

the wetted ares by the top width, or:

A

d iy " Y e
I,
B

cad=  WETTED ASEA IN THE FLOW SEBCTION - Fig, 2.2

represenis the cross section of a circular open channel,
perpendicular tec the dircction of the Fflow, in which the
water circulates to the depth of the flow, (d).

In erder to calculate the wetted area, 4, of the section,

we sheuld divide it inteo twe purts: @ circulcr sector, AOBC,

e |

and a triangle, AOR. 3o,

A = sector aqrea = triangle orea

Sector area = 4 (radius) (arc’s fength)

— PP AP st T S




where ; n
F

nre's length = radius x  angle

Therefore:

1 D D 1 — —
A gemfe—kOK— = 2 % Aﬂigﬂﬁ

2 2 2 2

but ir the AC3 1riengle:

D 8 D e
= — Bén-— OD = — co8-—
4D 2 2 | 2 2
o0 e
D4 1 D e D 8
A wom @ w—x2X— e~ X CO8 —
8 2 2 2 2 2
Simplifying:
NG D2 o o
Aw— @ =— (2 sen— cop—)
8 8 e 2
ikl
| e (%
gen 6 = 2 gsen - CO8 — {sirne of twice the arc)
Py 2
there fore:
e -
D2
A = - [9—-53:1 9]
8 S

As o proof of ;hiﬂ, we shenld observe the following table,
I'he rrevious fermula does not have much practical use in
Fydroulic Engineering, becouse it appeared as a2 funcition
o! the angle of the wetied section, It is more useful if

the agrea appears o5 o function 0 the diameier of the

conduit end of the depth of the cetied section.
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TABLE .= Yalues cof the weited area for Cifferent values

0f the angle o the wetted section,

ZRL: S .
, Arngle Voiues Joiue of Vaiue of i
I Negrees |  rodions sen © g arec
1 | 2 - K St
O 0 C O .
180 01 0 1/2(TD°/4) |
360 2 0 T Do /4 |
—_ A . ' | |
From Flg, 2.2 we obtain:
It = &0 ~ OD
but:
D
DC = 4 vy 00 = ~—
2
also:
3] D e
OD = AQ €08 — = — COB —
2 2 2
50:
‘D D
§ m — ~ —cos 9/2
2 2
from where: |
8 d
cos—=1 -2 5
> 0 2
<1 a -
0 =2c¢co8" |1 -2~ (Férmula 2.1)°
D .
bt

sen

> ©

2

&

—cosc— = 1

2
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from where!

orT also;

i 5
o d K
Een-—--x\ 4 — ~ 4 ;—}
e - D D
:
6 a [ d
sen—= \ /4 — {1 - — (Pormula 252A)°
2 DL D

If we substitute the values 0] sen e/2 and ces 8/2, in the

formula sen @, we will hoves

teﬁdremnﬁ:

I1f we substitute the values cf 8, given by Formula 2,1

and sen 9, given by Formulo 2.2, we chtain:

D° ' a i =
o i— -1
! a[am (1"2*5)'4(1"2"5)“[ "5”




. | 2.6
v —d i T il e - — P T e - -
or also:

o

L] s -

an

. 2 "'l
D2 day D ayija d V! FPérmu-
K o —— cns-ll-E— -“""(1-'3“' _( = o/ 11a.(23%3)
| 4 - .Dn/ 2 v pli¥D p/ |+8-R<e

-, e L i R — - — R

This fermule gives us the area of the wetted section as
2 Sunction of the diameter of the conduit and of the depth of
vhe flow. Jo that 1t will ke 07 general use, we can present
it in an adimensional way, dividing by the square 0f the dig-

meter c¢f the conduit, In this case, we can ohtain:

ol ——dﬂﬂﬂ_ﬂ'

da, 1 d\,|d d
LIV T3 DU PO T CY P
ne 4 D ) DI KD b |

i
- : - : LI TR

1} we make o table, calculating the vaolues o/ A/Dz, for
different values of d/D, it will be very useful, Iy we desig-

nate thet vaolue by X,, we will hape:

A

where, Kh'is the value glven by the list, which we will call

Area factor, In any case, the ares will be cbitained from the

Formule:

Anglogically, we can moke a chart in o double logarithmic
paper, taking as the abcissas {independent variable) the
values of /0 and es ordingtes (dependent variable) the paluyes
cf ﬂ/ﬂz. At the end of this chapter we have the table and the

chart for the calculus of the wetted aren, dccording to the

i Nl iy oy =2 il i ey cgibm— — = S SR At T L 0 e H i
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preutuuﬁ formulao,

2.3= WETTED PERIMETER IN THE FLOW SECTION~ The wetted peri-

meter in a flow section, 1Is given by the formula:

perimeter = arc radius x ongle

or. D

d
Designating cos i 1 = 2 | hy.Kp, we will have:
D
p
D
and
P = Kp D

Ir we maoke o table thot glves the K value, for different

b
values of d/D, it will be very useful, becaouse we can calculate
the value of d and of D, We will call the Kﬁ fdctnr, the

wetted perimeter foctor.

In the some woy to what was done with the areo factor,
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2y b

we could make o table or o diagram of its values as o function

of the 4/D relction.

2.4= HYDRAULIC RADIUS OF THE FLOW SECTION.- The hydraulic
radius is given, in general, by the formula:

A

e

o
So, dealing with a flow section, partiaclly full, the

hydroulic redius will be obtained, dividing the value of the

area, given by formula {2-3), by the wvalue &f the perimeter,

glven by formulas (2-~4%), so:

— d
_chonl(l-z )-—1-2ﬂ)V_
: D

R =

ars

Simplifying ond designating KA/ K, by K, we will have:

P

= KH b

or adimensionally:




& .

The above derivation, tells us, that we can obtain the

foeetor of the hydraulic roadius, dividing the areoc foctor, bu

the wetted perimeter facter, for the some volues of d/D.
Now we are prepared (o make a tahle or o diagram that
gives us the value of the hydraulic radius factor, by the

formulo:

2.5 = TQP WIDTH IN THE FLOW SECTIONS.- From figure 2,2,

we have that:

o
W
&N
-
-

B =2 x AO x sen
S e 2

| &
D sen o——
2

B

having in mind thet A0 = D/2.
If we substitute by sen €/2, the value found before

( Formula 2.2 A), we will have:

]




The radical can be designated as top width factor which we

will represent as KB'

In o similar woy, to what was done berfore, we con make o
table or diagram that gives us the value 0f the ftop width facter
T2
a8 o function of the d4/D relation.

.6 = MEAN DEPTH IN THE FLOW SECTIONS- We hocve seen that the

mean depth is given by the expression:

A

or also:
| Z
Kﬁ D
G =
KB D
Making KA/KB = Km » called mean depth factor, we will hape:
dm = Km D
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In o similar way to what was done before, we cun make G
table or diagram that glves us the volue of Km_us a function
of the d/D relation.

In the following paoges we give some tables that are
useful in calculating the geometric elements of the flow
sections partially full. They hove been taken from z&g
Hond book of Hydroulics of H.W. King and E.F. Brater, edited
by ub Crow Hill Book Co., 5th. edition. The diagrom has
heen taken from the work of E.A, Elevatorski, Hydraulic Energy
Dissipators, edited by Mc Graw Hill Book Co..

TABLE No, 1' -:anues of Kﬂ’ in the formulao A& = K‘ DZ s foOr

difrerent values of the d/D relation,

!
|
|
|
E
b
|
]
{
1

4

e |
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TABLE No, 2 « Values of KR » in the formuloc R = KR b, for

different values of the d/D relation.

TABLE an J = Volues of KB’ in the formula 8 = KB D, ror
different values of the d/D relation.

; o ity el Tr l —u—'l
- d 00 1..01 | 03| o3 | oe | 08 ) 08| o) o8] 0]
D S . : 3
A 1.000 199 ¢ 280 | 341 {.393 | 438 | 475 [ .510 | 543 | 573
11 800 | 626 | 686 | 675 | 604 | 714 | 733 | 750 | 768 | 7ma
3 800 | 815 | .828 | 842 | 354 | 688 | 877 | 28 | sos | oom
3 017 | 925 | 933 | .40 | 947 | 954 | 060 | 968 | 071 | 978
A~} 980 | 084 | 987 | 500 | 989 | 098 | .ou7 | .008 | 909 |1 000
B 1000 [1.000 | 000 ;| 008 | 007 | 908 [ 593 [ 900 [ .on7 094 }
-0 | 980 975 | 971 | 068 | 000 | 084 { 047 | k0 | 933 | ons
|7 | P27 | 908 208 | aan | 877 [ 808 | asa | 0a2 | a%e | w5 -
| Sj.a00| 7e8 | 788 ) 781 | 723 | . ST | 880
&l 200 573 ] .54 341 | .m0
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TAEBLE No, 4 = Values of K. in the formula d =K D, for

different values of the 4/D relation., (*)

%— 121 1 | 02 (i =.d D4 1].3 04 07 L D8 0
A ) 000 | 00T | O3 | 020 7 037 | 034 | 040 5 04T | 08 | 081
1 AH68 | OTSH p D82 | 08D ¢ 096 | 103 | .111 ] 118 | 128 | 132
& | 140 | 547 [ (185 ] 82 | x| 1YY | ABS | .93 | 200 | 20a
S| Ad ) 334 | 232 | 240 | 249 ) 257 ¢ 265 | 274 | .omz Jo1
4| 2900 [ 308 | 317 | A28 | 335 | 345 | an4 L63 | 373 | A8
J ) 393 | 403 | 413 | 423 | 434 | 445 | 458 | 487 ! 47TR | 400
B | 802 | 514 | 527 | 840 | 553 | 568 | BRO | 505 | .810 | 825
J ] 841 | 887 | 874 | 892 | 710 T30 | .80 | 7yl vea | BT
A ] .B42 | 869 | B80T | 929 | .080 | 004 |i.035 |1.078 (1.126 |1.t8n
F JL241 |1.31F [1.393 }1.402 |1.813 |1.768 |1.07T [9.256% 13.70%2 ' [9.940
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DIAGRAM No, 1 - Values of Ky in the formulo A = Kﬁ D, for

different values of the d/0 relation,

i.0

-u-l
05
.
2 |
| : IR, B
'Y . 05 10

*d = A/B is really the mean depth, only when the circulaer

condult works half full eor with less depth,




CHAPTER 3

APPLICATION OF THE BERNOULLI THEOREM TG QPEN CHANNELS
3.1 - TOTAL HEAD IN FLOW CROSS SECTION. - The Bernoulli

sum or ftotal head corresponding to o point of the flow
cross section, has the following expression:

p 'l

H= z +

W 2y
where .

zZ, is the distance from the considered point, in the flow
cross sSection, to o datum plane,

p, the hydrostatic pressure existing in that point,

Vo, the velocity of the water when it passes through that
point,

w, specific absolute welght of the water Flectrical Engineering

| Department
g, itntensity of the gravity.

The Bernoulli sum or, total head for the flow cross

section of o stream, through an open and straight channel,is:




where:

Z, is the inverted distance of the condutt to the
dotum plane,
d, i3 the depth of the flow,
€, 12 the angle that forms the grodient of the
invert with the horizontal,
V, the mean velocity in the cross section,
o, @ coefficient of correction.
In effect, suppose an open channel with u'btg slope
invert, Flg, 3.1. Let ﬁs designote by L, the distance
between the two sections that are constdared, measured along

the invert and x, the horizontsl projection of the previous

distance., From Fig. 3.1, we obtain:

| z, - z,
z; = z, = L sen & sen 8 =
L
This value receives the nome of hydroulic invert slope.
Ap =22
zi-z2=xtun9 tan 0 = ————————
x

This value receives the noame of topographic invert slope.
J«2 = PRESSURE HEAD.- Let us congider » Flg, 3.1, on elemental

Superfictal element of area, dA, in the invert. If the

pressure over this element {s p, the total force over the

surfuce; dA, will be:

._f__—-m-——u——————~—-——-—-—-“—-—“-“_-——‘—‘“"““““‘“*““*“‘“f-'__'
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de = p dA

but the force, de, is only the component of theweight of the
oblique parallelepiped, of d4 base and d height, perpendicular

o the element, dA,
Volume of the oblique paralilelepiped d¥ = d.d4
Weight of the previous parallelepiped dF = w d dA

Component of the welght perpendicular to dA,
de = wd dA cos @

Therefore:

pdA = wd dA cos €

from where:

—_—cd cos &

but:
d = y cos &
Therefore:

= p 2
' —_ =y cos ~ €

W

It should be observed, that, d, is the depth of the flow,

pr, the height of the Jlow cross section, perpendiculsr to the

invert, and, v, the height of the vertical cross section,
3.3 ~ YARIATION OF THE PRESSURE.~ If in o fluid mass the pressure

" wvories directly isith the  depth, it is sold that the

pressure follows the Hydrostatic Law. The pressure in o
ﬁnint (1), is given by:

p, = pressure in point (1)

w = specific absolute weight in the fluid

__'“_W___—_-m_______
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- ¥ = depth of the point in relation to the free
Surface of the flutd, Fig. 3.2

In effect;_let us consider the inside of a rluid mas3,
Flg, 3.2, o superficial element dA. Let ys consider, also,
the prism that ts vertical to the element dA. Let us Suppose
that this prism is solidified and let us apply tha‘stnftc
equilidbrium formula to it,

| F, =0
where:
Fu’ vertical forces.
The only vertical forces that act upon are:
1.~ The weight of the prism: dN = w y dA
2.,=- Force dué tﬁ the pressure: dP = p dA
Therefore:
PdA -~ w y da = O
Irom where:

P = vy

The Fig. 3.4, represents the Law of Yariostion of the

Fressure with the Depth, 4s it is the law of variation of o
no-flowing fluid, it is called Hydrostetic Low, |

Let us consider, now, a flowing rluid mass, with o free
Surface, In this case, the distribution of the pressuyre
Yollows the hydrostatic law when, only, does not exist any
component of acceleration in the plane of ‘the longttudingl

qaattnn. This c¢ose, is presented, only, when Jluld particles
r.'moua @3 3troight and parcllel trajectories,

In effect, let us consider two cases:

o
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e
-—-—__.—-‘-.-—_—Flﬂ-r_lﬁl—hﬁ__-—-—.—_._ﬂ;‘*~w =

1,- Motlon as curvilinear trejectories

<.~ Motion a2 converging or divérging traojectories.

turviiinear convex trajectories.~ Let us suppﬁse'u Tlowing

fluid with curvilinear convex trajectories, Fig. F.5, with

G curvature radius, R, Let us consider the prism solidified
above thg superficiol element dd. Becouse of the curvilinear
trajectories, there will exist an acceleration and dn tnsrgtal
force (centripetal force), besides the weight of the prism

and the rescction over its base,

Applying, in this case, the formula:

ZF =-ma
where:
ZF = acting forces
m = mass
@ = acceleration
So:
AF - r.:ll_l' g d’Fc
but: | wy dA 112
. dF = p dA aW = w y d4 ch = tia—rre
g b5
substituting:
w y dA V2
P BA - v Yy d4d = - ———— ——
g R

Simplifying and clearing up p, we will have:

wy V

g el

a R

D = wy -




?.5

Flg. 3.6, represents the low o Yariation of the Pressure 1in

'tbts case,

c
where:
dP = p dA
AN = w y a4
" ¥y dA Vz'
Bl & ot o
2 R
fherefore: VE

wy dA
P dA - wy d4 = '

. P

V2

PR Y 40y ——
g

v Flg. 3.8 represents the Law ol the Vartatton o] the

£ressure in this case,

Diverging trajectories.~ Let uys consider, now, o diverging

Tlow, Fig. 3.9. The acceleration produced by the varistion

| ¢
0F the velocity, con produce an inercial force that cap hove

Jimplifying oand ¢clearing up p:

on e¢ffect on the vartiation 0f the pressure in the section,
| The fqrces thot act upon the elemental prism are:
Its weight: dW = wy 4 |

Reaction in the base: gF = p-dd

‘““““‘“'“'f‘*“*"""'““‘—“*“‘“-“*-*-“-f-**“-—-*---—-—f--



Inertial force: Wy dd
dFt = &

¥
g
where uy, is the vertical acceleruttun, in the section.

Therefore, applying the formula:

b o
Fy m uy
we witll have:
“ w y d4
P OdA -« w y di = uu

e
simplifying and clearing up Gy, We wwill have:

%y

P = wy + wy ==
g

Converging trajectory.~ If we consider, now, o ceonverging

trajectory, Fig. 3.10, and we apply the same procedure, we
will obtain:

wy dA
P OA - wy da4 = - uy
g
Simplifying and clearing up p:
3 ' 1 uy
P=WwWY -
g

30, in the case of converging and diverging flows, the effect
of the inertial force 1is proctically worthless, bécuuse there
is litile acceleration.

3.4 - VELOCITY HEAD, - The kinetic energy of every pound of
water that passes through every point of the flow cross section

of the sitream, is given by:
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Ve
g

where V is the point velocity.

The kinetic energy of the amount of water that passes
through the element of the area, dd, of the flow cross Ssection,
where the velocity ¥ exists, is ubtutned in the following
way, Fitg. 3.11,

Volume of the water that passes in time unit: dQ = v 44

Welght in such volume: AW = w v dA V2

Kinetic energy of that welght: dEd T WV 4hA ——
29

Totol kinetic energy of the rlow:

¥
E = —— ¥ 44
g
The kinetic engrgy of each pound, or, the head adue to the

velocity, is:

¥ w A Vﬁ
J

Ec v dA

K 2g A Fm
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where, V. _, is the mean velocity in fhe flow cross section.
m

Sut *he welneity head of the flow, expressed 23 o funciion

of the mean welocity, can be formulited as:

2
Hy 8
.y J

cg

S0
/
2 3
Vo JI 7 dA

from where.:

The need for z cocfficient of corrcciion, is due to the
fact that the disiribution of tne velocity, in the flow cro3s
section ic not uniform. 17 it were, V would be constant in

a1l the section and we would houve!l

3
S
I ¥ A
r:i\:_l-_-w-u
; J
A Vm
o> = ]

As we see oll tais, the tofal head of 2 flow 13 given

i

Tvr/;

2 +d coz 8 +¥
29
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T'ive coefficient oFf correction, ™, called coefficlent 0
Coriolis, is the Jactor that, ir it is applied to the head
due to fhe mean velocity, to obtsin the rea] eEneErqgy per
pound that passes through the flow cross section,

Let us demonstrate now, that the coefficlent of Coriplis

is more than 1, In effect, we know that the coefficient of

Coriolis is given by the expression:

./': Y
ol = - —_
o
v

The point velocity, Fig, 3.12, cen be considered to be
made up of the sum of the mean velocity, plus a varisble
increment AV, that can be positive, negotive or zero, so

that:

V = Vm + AV

According to the definition of mean velocity (the one
that when multiplied by the area of the flow cross section
of the streaom has as result the discharge that passes
through the mentioned section) we will have:

* 7
AV :_/ V d4
Substituting the valuye of V, 33 a function of the mean

velocity:

a4 v =(vm+Av) a4
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Cw the other hand:

4 3
fv? a4 = /rvw vy )’ dA

L
[ T [

:Ji(,"ri + 3 Vf_'t_élv + 73 T,-'m (:ﬂ?)g + (ﬁ.‘r’r)j) dA

i
'

&
!

{173 3/ é ;
S Ve A *3 VLSV AA 3V, (AV)™ d4 + [/ (&V) 1

2ut we have sesn that:

¥ d4 = ¢
- 2
i thutg{(,v)” di4, 15 an essentially pesitive integrel, that

we can describe aon:

[oni 2 00 = 2
(&Y ) dﬁ._'?) Ve

¥

In relation to the integral:

/.(&V JERRrY

iz very smell, because 4V can be positive, negative or zero,
Zo that, logically, we con suppoce that it *ends to be zero,

s we have seen, we will have:

/'J 3 J
S04 =V +
!/.« Vo A 3 vm@;;
2o frat, the wuluye of =4, will be:

J 3
V., 4 + 3 V- 7 A

Al

v’ 4
rr

:_I+_;-~?“)

Mvia shows that the coefficient of Coriolis is more than 1.
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e cpplication 0f the Bernoulli Theorem,

-

A we Pave zegn, t

crteena feo Slow oross seections 0/ & 3tredm, has the expressic::

/2

Py
z, + dI 03 8 + X, =z, + dE cos 9 +f§ - hf

2q Zg

nhere b, 15 the loss o7 head between the two considered sectior: .

seo o= ZAPERTNENTAL DETERVINATION OF THe COEFFICIENT OF CORIOLI., -
sl alidinaNi AL e et tac D i dd ot o ] OF CORTOLT,

‘g oprocedure thot is usually followed for the determination

L o

he coefficlent »f Coriolis is dye to Prof. ¥, P. O'Brien,
Tt ois graphic arocedure, that consists of tracing over the
J 40 oross section of the conduit, the curves of equal velocit .
chiained from the measurements in different points of the crorss
Fection of the conduit and of the determination, by meagns of
i planimeter, the arac be tween every two conseculive curves
“S raual velocity., The next step is to trace a mass cCurve,
LARLc 3 abscizaas tho nccunulated arees and a3 ordinates
vl coarrasponding uelucities._ The value of integrulJ/?j d4,
o oeohteined calculating or dividing, by means of a planimeter,
cw¢ area under the curpe comprehended between the same, the
cxtraome orlinates ond the avis ¢/l the abeissor, substituting
in the formula: [v3 44

J

> =

3
v, 4

we odtain the value of the ceefficient of Coriolis or correctic
Facior of lhe head dus to the mean velocily,
Let us apply the procedure to a circular cross section,

iz, 3413, represents the Flow cross section of & circular

- — i M‘-u-.-




. , - gepse e o Jedd

corenit, Tacre aprear Lthe curves of equal velocity correspone

= L

e B
5.
W
L

-

Fhae poloritiso ¥y » Vaop Vo, Sy oand Y., thot were
' i

b s

gotuined in topograonty the contour lines,

3

Un 1 sysiem of axizez of rectongular coordinates, the
accunulaied areas thot comprehend the two cansccutive curpes
of equal welocity, are taken 28 absclssas, beginning with the
beripheral curve of the conduit, In the exlremes of every
merticl ares, are traced ordinates thei represent, in scale,
she cubes of the velocities that correcpond to each curpe of

equael veloecity fthat imiftgtes them, The aerea thoet caovers the

zurve troced in that way, the axis of the abzcissas and the

b

extreme ordinates, give us fthe value of
!
“q o !_;" B l_i""
Tt

che gquoticent of dividing the areg Ac by the product

ne integral:

b

i 4

y gives us the value of o,

N
3w

e coefficient of correction of the head due to the
mean velocity o8 no? need o be considersd in mony onen
channel prehlems, but in others, it should he considered

mhen the nead due to the velocity acs the some mononitude

b

b,
Wi
et
'-'."\i
L
)
A
o
2 I:.:I-
l—1
i" L .
W
=

e that are ploced in the 2ernoulli equation.,
An application of the fuctor of corvection of the

velozity head iz in the caleulation of the lons of head in

arn onen chownel Jhe steady unifora flow iz wery rare
Gni, wiually there 1o o differencs hetweon the mean velooitison
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the losa of

pelocity ia siwiloar

X has the szame velue in suc

af theo pe
eresence of curves,

> ecoefficients in

If in the ZBernoulli equation, applied

2z + dl

we clear out hf,

ihiz equotion

1f the difference:

(EI +

iz big in rolation to the

the velocity.

head 1in dezired,

locity in the extreme

Sy

If the distribution of the

it makes that

in both extreme sections,

distribution

hocections, I/ the d

cecvions 18 changed by the
coatrections or other vbstructions, the

both sections will be different,

L0 open channels:

2
i)
/ s
o e i3
con @ 4+ S = 33 + dE
20 2q

we will haove:?

£

heads due to
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/ the zrea and velacity, respectively, in tre defermined
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vewy TRZ mirenm flow to uniform, 17 the wvelocity of
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L4
A8 o resylt of this we will rave that:
4 ¥ conztant
2long She wigle 2onduit.
43, the gpen channels that we are 3tudying, are
artificial conduits, (made by mankind} a0 viwgys five

pTLEOGILe snape, the ares wi RS CFESE ge

0

tion 1= exclusive

funciion of the daepth of tre _Jicw, in o slren case., 3So then,

the depth of the flow, {denth ¢f tre nermal Sectisn to the
gencrel dirceiicn of the rovemert) vill he censtant clong

the whele conduill, and we will hawve ffat:

= —— 1 — -
g ST EOE ¥
I M- L L R B IR B B O B B I R BCEE B adf
4 1

there G, reprezents the depth ¢S the flow, and the subkirdex
deternines the cross section, Fig, 4.1,
AZ a rezult of thiz, tre free lop oF the water (top

gqrode lire ) and the irvert crade line =7 the ronduif, will

Ce purxilel liwan, If we designate 'y 3 ond hy s the
i%

Dl

relpeciive slopsd of euch cne ~F the grade lires, we will

T o] Wi kel e - g P by Y e - S T R T N — AR a1
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1f L, represents the distance between both corsidered
seciions, measured along the invert of the condult, we will
have thot:

Zy = %y
= gsen &

L
where Z, and Z5p Gre Lthe lowest elevations of the considered
secilions,

Fhe application of the Bernoulli Theorem, to the cross

sections (1) and (2), is :

2 2
1 , Vs
zl+d1cns&-'r-°(1——=zz+dzcnsa+°<3 +hJ,

2q ' 24
where:

z = elevation of the point

d = depth of the flow
V = mean velocity
&8 =

angle formed between the invert of the conduit
and ithe huriznntﬁl plaone |
X = coefficient of Coriclis
The sublndex defines the considered section,
daving in mind that:

d, = d and that vV, = ¥

1 z i z

and !h@tﬁfl = X fer having both secfions the seme shape

ond area, tre former expression iz reduced to:

Ty = gy ¥ by




or
Or, the difference 1in elevation is the Same as the

10ss 07 kead, This vecurs only tn the steady uniform srlow,

But:
consequently:
sﬂ L = hf
cr also:
I
S Z s——
#;
L

By definition, hf/L iz the loss of head by the length
unit, or the slope of the energy grade line, thot we wtl}
destignate by S, .

30, in the steady uniferm rflew, $t is Julfilled that:

g = =
S 'SD SE

or, that the thrree grade lines are parallel,

4,2 = FORMULAS FOR THE STEADY UNIFORM FLOW.- The hydroulicigns
s pay fUR THE GTEADY UN.

6f all times have been preocupied in nbtuihing formulas

thot give the loss 0f hecd in the open channels and forced
conduits, poth €ssentially, are the saome,.

From all the proposed Jormulos, the most uysed in expressiﬂa
Iass 0/ head are the quadratic and the exponentigl, |

The first ones come Jrom the hypothesis that the

resistant unitary force is g junciiun nnlu, of the square
ol the velocity. From there, i1ts name.

—““‘“_‘“‘—“'“-“—‘—"‘““‘;‘*‘—‘“—*“*—““-—;;?;i




‘Phe second onés, are the consequence of the hypothesls

thuf the resistont unitary force 1s a funcfion of certain

power of the hydroulic rodius (area divided by perimeter

cf onother power of the veloctiiy, other than itwe.

Expressed maotrematlically, the two former hypotheses agre:

= ki VE for quadratic formulas
n _
v |
Y= k, — for exponeniicl formulas
™ |

where:?

all

force resistant to movement, by ecch areo unlt,

"
v mean veloclty in the section,
R = hydraullc radius in the section
kl and kz, proporitionality cnnstuﬁts, unknown
n and m, unknown exponents.
Let us suppose thot Fig. #.2, represents an open channel
with d Steady uniform flow, Let us suppeose thot theﬁfinw
cross section is cirﬂuldr, ulthﬂugh.wﬁuf-we expose hefe is
general.
The forces that act upon the mass of water thot comprehend
éecftnna (i) and (2); are: | |
.- the weight, H,'uf such mass of woter, gilven by:
| ¥ = w A L
where:
w= specific absolute weight of the water (weilght of
the volume untt)

A = area of the flow cross section

L = distance between sections (1) and (2).

M



2,~ The forces due t¢ theﬂhydruﬁtutic pressures

in sections (1-1) and (2-2), which we will designate as PI

qnd P,. The force due to the pressure is glven, in general,
by:

P=w hﬂ A
where, hﬂ = head cver the center of the gravity of the section.
As sections {1-1) ond (2-2) have the same shape ond area, & and
ﬁn have the some values, respectively, for sections (1-1) aond

(2-2), so that Py = Pp

3.= The force resistant to the movement, which we
will designate as FR' This force hos os volue tﬁe ores of the
lateral surface of the conduit, in cu;tuct with the water, by
the resisitant force by aresc unit, or:

FR =TplL

where: p = wetted perimeter (perimeter of the cross secition of
the conduit, in contact with the water)
Applying the formula of the dynomic balonce:
F=mao
in tﬁe direction of the movement, ond having in mind that the
ﬁntiun is uniform, we will obtain: |
| = 0

1 R

Simplifying:

# sen & = FR

gr alzo:



but:
A
—— T R (hydroulic radius)
p
s
3en 6 = ——— = Ee
L
therefore:
T™=w R s,

Up to this moment, the p#eutous formulo is o rotional
Jormula, it was found by mothematic reasoning,

Ist, Hypothesis.~ According to this hypothusfs:
Pk

therefore:

- from where:

L

Dpstgnutiﬁg w/kf by C, we will hove:

vV = C\}R sg

This expression will be an empiricaol=rational formula,

because 1t is based upon the matter that it was obiained,

|
partly from mathemaiic reasoning, and portly using a hypothesis
bosed upon empiricael knowledges. In order to use this formula,

it 18 necessary to determine the velue of C by experimentation,




Representotive of the previous -formula, as we hove
called {t, gggdruttc formulo, 13 Chezy formula, obtained
by the french hydraulic Chezy, in the way exposed above,

for open channels,

Some experienced men,are speclalized in the determination
of the coefficient, C, usually coalled cgefficlent of Chezy.
Among the proposed expressions to determine the value
ol C, the best known ore: that of B&ztn, french hydroulic,
ond that of Ganguillet and Kutter, swiss hydraoulics., Such

Jormulas are:

157.6
C = e .Bazin formula

m
I wh e

o

=

0.00281 1.811
T I T e e
| s n Ganguillet
- C= - end
: Kutter
0,00281 n Formula
1 + b1.65 +
L 3 \/R

#e see that, C, in Bozin formula, i3 a coefficlent,
(not a constant, aos it wos exposed by the formula) that
depends upon the value of the hydroulic radius, and of m,

'8 roughness coefficient, that depends, ot the same time,

‘upon the material in which it 15 constructed or iz mode

"_" ;R
Es ol
- e 2 - " .
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up the open channel, and on the state-of superficial polish,

e

According to Ganguillet and Kutter formula, the coeffi-
cient, C, depends upon the hydraulic redius, upon the slope
and n, o factor thot depends upon the kind ond state of the
superficlal friction between the water and the conduit.

A study of the original repori of Ganguillet ond Kutter,
demonstrate thot the presence of s, in the rformula 1is due to
their effort in including the observations made on the
Mississippi River,

Later Ltnvestigators hove demonstrated that the exactness
of these observations is uncertain and it is probable that
without them, it should not be necessary to include s in
the formula, Nevertheless, the effect of s over C, according
fo the formula 1is very small, except for small values of s,
For values comprehended between O.Gllnnd 0.001, the varictions
of C are very small, and for slopes larger than 0,001 the
value of C, calculated for s = 0,001, can be used, without
Yalling into larger errors than those inherent in the formulc,

For that case, the formula is reduced lo:

1,811
4i 4 + —
I
0 = e
n
1 + 44 4 oo
|

Ganguillet and Kutter formula has been widely used in

the Unitted States and in foreign countries, and they are

greatly experienced in the selection of the roughness coeffi

o i O P s SO UYL o gy M‘m
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clent, n,

2nd, Hypothesis.=- If we accept that:

a3 the best representative of the phenomenon, we will have,

that:
| /n
w R S, = kz -
2.
from where:
wl/n
V— wam e R (M+I)/n sé/n’
2
Making:
LD I/n m + 1 1
s = K = X e Y
- kz n n
we ﬁtll have :
. X Y
V= KR 5.

This formula, which is clso empirical-rational, 138 the
kind called exgunentiui, bhecause in order to put it into
practice, it is necessary to know the values of "x", *y* and
#pw, According to it, the value of k, depends exclusively,
'upnn the materiacl thaot maokes up the friction surface of the

condutlt with the water and upon the smooth stale oS such
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suryoce, There are many formulas of this kind, but one of

the best known and employed, i3 the Manning formuls , that
has the expression:

1,486
¥ = e szj

4

Factor n, i3 a roughnesgs coefficient, of the same

numericaol value as n of the formula of Ganguillet and Kutter.

1/2
SE

The reasons why the Manning Jormule is so widely used,

are:

l.- It has o more simple expression than the
Bazin and the Ganguillet and Kutter Jformulas,

2.,=~ The inequality of the uu}ues of factor n,
with those of the formulo of tanguillet and Kutter ond the
great experimental knowledge of the roughness coefficient,
Jor very diverse cases, because of the frequent use in the
past of the Gangulllet and Kutter formula., In Europe,
Manning formulo is known as Stricker formulao.

J.= Manning formula haos the advontage of epplying
lng&rithms, being of eoasy adaptation for demonstrations
‘and colculus. |
Manning formula, given originally in the decimal metric

sysiem, has this expression in that system:

1

;= p 23 1/2
e
{4

“‘“__—_-I_w%“_ﬂ-__
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If the value of the velocity would be given in feet/sec.,
we will have that in mfsec., it will be V/3.28 and if the
radius is expressed in feet, in meters, it will be R/3,28.

Substituting those volues in Manning formulo:

v 1 [ r 72/3
N 112
3.28 n | 3.28]
Sitmplifying, we will hove:
1.486 _
n

It is convenient to call the attention to the fact that
the formulas of Chezy, Enzin, Gonguillet and Kutter, and
Manning, refer, strictly, to the steady uniform flow,

The quadratic formula, really, is a particular case of

the exponential formulas, In effect,

Quadratic formula - V. = CAJR s or V = (C RI/

Exponential formuln V=K R

He see that, the first formula is o particular case of the

second, in which:
x = 1/2 -y =1/2
If the exponential formula would have, for the expeoneénis,
the correct values, the value of K, would be a functiion, only
cf the material that mokes up the surface in contact with the

water and of iis polish or roughneas stote,
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4.3 COMPARATIVE 3TUDY BETWEEN THE FORMULAS QF WEISBACH-DARCY AND

OF MANNING.= The Feisbach«Darcy formula, very well known {n

Fluid Mechuonics, for the study ﬁf the forced condutits, has as

expression the following:

L v
hy = f — —— ~
D 2q

where:

7 loss of head between two flow cross sections,

roughness coefficient of W + D,

diometer of the condult,

- U - =
I

= meon velocity in the cross section,
g = intensity of the gravity
If we remember that the hydroulic rudtué, Hy 13 equol

to D/4 and in the previous formula D is replaced by 4R, we

will have:
L Ve
hf = f e— e—
4R 2q
Ifwin Manning formula:
1.486
v = o2/3 o172
| e
n

we substitute 8, by its value, hf/L, we will have:

1,486 | |
V 2 e p2/3 (hJ./L)I/‘?
¢

if we cleor out hf, we have:

M



1.486%2 Y3

Fqualizing the two values of hf :

L Vg . nz L
; — = — v
4 R 2g 1.4862 R4/3

and clearing out n, we will haove:

n = 0.0926 /6 41/2
The formula that relaies the velue of n, in Manning
furmulu, with the value of f, in the Weisbach-Darcy formula.
The Weisbach~Darcy formulo, tn'the present, ha# been
widely studied, so much, from the theoretical to the
Iexpertmentul point of view, up to the potnt that we hape
grawn into the general conclusion of:

€
ff-"‘ﬁ(HR, i)
D

" where:
¢ = function of,

Nﬁ = Reynoalds number

e/D = relative roughness
e = characteristic height of the roughness,

Dealing with forced condutits:

m____“—m—m.—__—_____-___-_“




Vv D e
NH = o‘ relative roughness = e
. D
Dealing with opern channels:
4 V R e
Nr = —5-——— relative roughness =
4R

Therefore, desling with open chonnels:

4 V R e .
f=9( —, )
v 4R
therefore, we will have:
"4 VR e |

n = 0,0926 RI/ScF

S
- v 4R

i

that can be expressed, in a simpler waly, saying that, n, in

Manning formula should be o function of R, V, € ond gI or:

n = T(H,V;E’, ‘J.)
As:

1.486

21 112

<
|

n

indicates us that deoling with o conduit that conducts
water, with o determinated ltemperature, the exponent3 of
v gnd R, in Monning formuls, do not have, tn'generul, the

correct values, IS those exponenits would be correct, n,

mmﬂd—ﬂl—“——-‘—hﬁ__——‘w_
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would vary, only with the kinematic qjsaustty, and with the

relative ruughnesé, e/4R,

#e should remember, that from a study of Moody's diagram
for the variotions of the coefficient, f» os o function of the
Reynolds number, N,, and of the relative Toughness, e/D,
instde.;he turbulent flow, the Jollowing conclusions are drawn
outs

1.~ In those pipes that ore hydraulically smooth,
the value of f, depends, exclusively, upon the Reynolds
number,

2.= In those pipes that are hydraulically rough,
the value of f, depends, -exclusively, upon the relative
roughness,

Je= In the zone that camprahends the smooth pipes,
and the rough pipes, the volue of f» depends upon the value
uf the Reynolds number and the relative roughness,

If we examine the previous expression:

4 Vv R e 7

O ey

1 - n = 0,0926 31/6‘?!- ’
” v 4R +

iis logical to think that, in opernn channels will occur:

I.- In open channels hydraulically smooth, the

value of n, will vary with the hydroulic rodius and with the
veloct ty.r

2.~ In the open channels, hydroulically rough, the

"value of n, will vary, also, with the hydroulic radtius and

|
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with the velocity. ’

J.- In open channels that comprehenrd the smooth
and the rough, the vailue of n, will vary with the hydroulic
radius aond the velocity.

We should observe that 1f we say that the value nfrn,
will vary with the hydraulic rodius, is the same thing os
1 54 we soy that the exponent 2/3 in Manning Jormula, 18 not
correct, Analoglcally, 1f we say that tt varies with the
velocity, is the same thing as Lf we suﬁ that the exponent
af 1/2 s not correct elther, |

As the hydraulic radius vary with the depth of the
flow, there is not any doubt that, ucchrdtnb t0 the previous
reasoning, the value of n, will vory with the depth of the
Jlow, |



CHAPTER 5
LOSS OF HEAD IN THE STEADY VARIED FLOW

5.1 - ESTABLISHMENT OF THE UNIFORM FLOW.- The steady uniform
flow does not occur fréquently in practice, Strictly talking,
it never occurs in naturcl open channels, In artificlal
open channels, it occurs only when, having the condult, o
steady flow, if has also an inverted gradient. in the direc-
tton of the movement and enough con¢ﬁit length. so thot the
meon velocity is constant along 1t. Thts is obtained. when
the component of the ﬁruutty actlion, in the direction of the
movement, equals the force resistant toc the movement. 1t 1t
is cnnstuﬁf, becouse the physical factors of the conduit
rehutn tﬁvurtnble, such ag: shaope of the cross sections,
material thaot maokes up the walls and bnttqm of the condull,
degree of roughness of that material and étrutght alignment
of the cundutt; |

In the conduits with a null grodient (huriznﬁtul
inverts) ond in the adverse gradient, is impossible the
exlstence of the steady uniform flow,

There exists the possibility, not certainty, that the

A E I _a R o i e L B R L




. v
steady unirform flow could be present, in the mild or
subcritical gradients, in the critical ond in the steep oT
supercritical, 1f there exists enough condutt length, to
give occasion to the uniformity of the mean velocity along
the condutt,

If the water enters in a conduit slowly, the velocity,
and so, the resistonce, i3 small, exc&edtng the grovity
force to the resistance, what gives occasion to an accelero-
ted circulation tn_tha spon of the entrance of the conduit,
The velocity and the resistance increase gradually, until
the gqutltbrtum be tween the reststtﬁg:fnrce ond the compo=-
-nﬂnt cf the grovity force is established, The portion or
span necessary for the establishment of the-unifurm J1low,
i3 called transitional 2zone., IS thé conduit is shorter
than the length required for this zone, the uniform flow
con't be obtained,
| With illustrative purposes, bnly, in Fig. 5.1, let us
represent three cases of long open chonnels,
| In Fig. 5.1 4, it t{s dealt with an open chonnel with
a mild.or suberitical inverted gradigent. The top of the
water itn the entronce transitional zone, appears wavy. . |
The flow is uniform, only, in the ceniral span, and varied,
tn the entrance and exit spans, Theoretically, the vartio-
'ple depth in each extreme zone is near the normal depth
gradual and asymptoilcally. For practical purposes,
ﬁlthuugh, the depth can be considered constant 1f the

vartation of the depth, d, is within certain margin, let

W
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us say 1% of the normal depth, d, o

Flg. 5.1 B, represents an open channel with o criticol
gradient. The tﬁp of the woaler in the critical uniform flow
is unsiteady., There can appear ondulations in this flow,
although the average of the depths 1is oconatent and the Etrcu-
lation éun be conslidered with o uniform flow,

| In Fig, 5.1 C, i3 presented aon open channel with o
st 3 critical gradient. There, the water posses,
in the transtitional zone, with o subarittcul depth, grodug-
l1ly. When tﬁe transitional zone 13 passed, the flow
agpproaches to the untfurm. The length of the tronsitional
aone depends upon the discharge and the physical conditions
of the same, such as: shape of the entrance, gradient and
roughness, |
5.2 - CHARACTERISTIC OF THE STEADY . = The steady
varted flow is presented in practice, frequently, in open
channels,

We hove seen, previously, thot in the siteady flew, 08 o
c&nsequénaa of the charaocteristic of that flow, constongoy
of the depth and the velocity through ftma,1hus as resuylt, that
the continulty equation should be fulfilled:

Q=A1V1 =42V2= ilililiill'll": ‘nvn

The flow is varied, (in relation to the spsce), Lf the

- pelocity of the flow vories along the condulf, or:

VI # Vz # -.i--u*-.-;.----# Vn
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Therefore; the flow is gteady ond vg[ied,-whsn both conditions
exposed above eccur, or.

AV = conatant Vv = varioble
As a annséquence, we will hove:
A = varioable
or, that the wetted ares is voriable ulung'the condutt,
Now, having in mind that the open channels that we ore .
studying, ore prismatic conduits and that the wetied thu_iqh
¢ function of the depth of the water, only, this wtill vary

from one section to the other, and we will have thot:

dI #dz# -.I-llll-#-l#lli"'l# dn

As.u consequence of oll what hos been exposed, the igp
of the water (woter surfoce grodient) and the invert grodient
or bottom of the open channel, will not be parallel lines.
_Strtctly, the gradient of the bottom of the open chaoannel, 18 -
o stroight line; the water surfoce grodient is & curve, thot
between two neighboring sections, can be considered as o
straight one, because the tangents are confused with the
curve between the two constdered sections, Therefore:

5y #34
where:

Z, = %, zl'f dl cos & ~%, =C0S 8
Lm . L B k L
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Fig. 5.2, we will hove:

_ i .
zZ; +3, 608 8 +X, ——'= z, +d, cos 0 +%, + h

2g | Y 7

but:

dI aus@-r-“tl =EI and d‘z CoS @ +XK_  —esem.

we will have:

z;, - z, €y = €, hf
-+ b
L L L
or also:
EI -.ez

8 # - = 8

As ¢
g ~ €2
£ 6 S, # s,
L

Therefore, the three gradients are not parallel] between

themselves, because they hove their respeéttue unequol gro-

- dients, or:
S, # S o # s,
In splte of what was exposed, we con say thot:

_—_—-——-_—-u———un———-——-_____...“_.__________________;____
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In the steady and varted flow, the slope of the three

gradients, that of the boitom of the open chonnel, the
superficial and the one of energy, ore unequal between them~

Selves, aond those three gradients are not parallel lines-
each other with eocch one gl the other two,

5.3 = LOSS_OF HEAD IN THE STEADY UNIFROM FLOW.~ To determine

the slope of the gradient of energy there is not any formula
that gives iits value directly. At present time, to obtoin it,

different hypotheses are made, that can be summorized in the

following synoptic table:

F " i . =
e fSEJ1+(Ee)E _ \Sgly D R
l-_e"" 2 - -'c 3

Hathaﬂs o

determine the

value of s,

s s A
| N

L ]

ot

i

"



In procedure (1) and in (2b), we have that:

vV, = Q/AI Vy = Q/AB R, = Ajfpj R, = ‘2/Pn

in procedure (26), vz hcve that:

g 2Q 29 2V, v,
Vm:: 2 m————m DD e—r—————
4, 4, + 4, ¢ Q Vit V5
B -+ '
Vi Vo
AI + A2
Iri (i
m
B, * Py

The hypothestis in.which procedure (1) is bosed, 13 the
following: In the steady flew, g¢grodually voried, the slope
- of the gradient of energy hos as value the average of the .

values of thez slopes of such gradient, 1f the some dischorge

would circulate to every depth that exist in the selected extr-

sections, with o steady unifﬂrm flow,

The hypothesis in which procedure {2) 1s based, 1is
;he fcllﬂmtﬁg: In the steady flow, groduclly vartied, the
slerpe of the gradient of enerqgy has a3 value the one that
cﬁrrﬁspnnd to the averages of the veloclties and hydraulice
radii in eoch one ouf the selected extreme sections.

#ithin this last hypothesis, con be disiinguished two
sih-caszes. These depend upon fthe way Ln;which the mean
velocity and the mean hydroulic rudius are obtained,

In subcose {(a), it 13 suppoted that:

= el



In subcase (b),

In subcose (a),

1 2
Am Z
P, By * Ps
2

it is supposed thot:

!
HI + Ré pl

2

it is supposed that-:

4 Az

o+

2

AI + 42
Bj ¥ Pg
A,
P2 Aypy *+ APy
2pyby
Q 4, *+ 4,
2



CHAPTER €

SUBCRITICAL, CRITICAL AND SUPERCRITICAL FLOWS

6.1 - SPECIFIC ENERGY OF CIRCULATION. - The specific
energy of circuluttan 0f & free condutt, is the total energy
of each pound of woter that passes through 6 c¢ross section
- of the flow, in relation to an hnrlznhtal plane that passes
through the lowestit point of the cross section,

In Fig, 6.1, is represenited the longitudinal section
cf the circular drain. In one of the ends is represented
the cross sectlon,

According to the daftnifton previously exposed, the

specific energy 1s glven by the following formula:

VZ

e =d cos @ + &
2yg

In effect, let us consider, first, the pariticles of

water that are found in AB oxis,

The potential energy of a pound of woter that is

placed at any height over that axis, is equal to:

d cos &
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;If the pound is lccated at the top of the water, iis
potential energy will be the vertical distance between C and
the horizontal plane thet pusses through A, or:

AD = d cos @

If the pound is located in A, the pressure head in that

point, equivolent to o potential energy, is equal to:
AD =d cos e

If the pound ts locoted in E, will be submitted to o

pressure head DF, plus a grovity head FA. The sum:
DF + FA = AD = d cos ©

Let us consider now, the porticles of the woter thot
are found in A'B' axis, .

If the pound bf water is found in C*, it will be
submitted to a gravity head equal to: |

D'A’ + A'G = D'G = AD = d cos &

A simtlar onalysis, for all the possible pesttions in
the flow cross seciion, will give us the same result.
Therefore, the poteniial energy of o pound of water,

%

Jor any position in the cross section will be glven by:
* d cos €

The kinetic energy o0f o pound $het passes through the
flow cross section, as a function ﬁf iés m&unruelpctty and
of the cuafftctent of distribution of the veloclty or the

Cortolis’® coefficient, is given by:

X
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30, trhe specific enerqgy, will be given by:

e =d cos @ + A (Formula 6-1)

2y
If we have in mind that: V = Q/A, the previous formulo

i35 converted itnto:

(Formula 6.2)

6.2 ~ ALTERNATING LEVELS OF EQUAL SPECIFIC ENERGY. - If we

represent the previous equation in a groephic, in o system of
coordinate axls, that has the szpecific gnergles as abscisas
and the depths as ordinates, we will obtain a similor graph
os Fig., 6.2. In the figure, three curves e-d are represented
corresponding to three different discharges,
An anlysis of the previous graph representation, lead

us to the following conclusions:

1, = Any discharge caon circuloate at two different
’depths, with the same content of specific enerqgy. For example,
the discharge ;s con circuldte o dI and d, depths, with the
3ame content of energy as €.

2. = For o glven discharge, when the spectfic

energy decreases, the values of both depths becéme neorer.

3. = When the content of specific energy, for o

i W
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given discherge, is minimum, hoth depths are joined into only
one depth,

4 - The valies of both depths, for 3 given dischorge,
that have the suame content of specific energy, receive the nome

¢ 3lternative levels or depths of equal specific energy.

5 = [he level ﬂr'depth that corresponds fto the
minimum content of specific energy, 135 designated as the critical

depih,

£ = Line 04 has an angular coefficlent m, equal to

7 = The values of the critical deplths increase a3 the
discharges increase,.

8 - The values of the criticol depths, for the
different discharges, fall over o sttalght 1line, or the

following relatien is fullfilled!

e .
dc . - min - 1
d . ain = 2
O o= O

G - The line (03, divides the different curves of

specific energy in three regions, called, critical region,

subcritical regton, and supercritical reglon.

10 - 411 curvegs have as asymptote, axis 0OX, and

straight line OCA,

6.3 = CQRITICAL DEFTH, ~ #e have seen that the critical depth
is the depth of circulation that makes the conlent of specific
energuyy o mintmum, for the given discharge. So, that flo

every dischorge corresponds only one critical depth., There,
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the ftwo alternative levels of anergy,'hre fused into only ﬁne
level or depth, |

In order to find the condition that determines the
critical depth, lat us derivetne expression of the specific
energy in relation to the depth and let us equal such deriva-
tion to zero, or let us find the condition for the mintmum
of specific energy.

In effect:

e =d cos & + K
2 g A

Deriving (e)} in relation to {d), having in mind that 4 is

¢ function of {d), we will obtain:

i (e) «Q° 24 d (4)
= ¢cp3 € - ' ‘
d (d) 2q 2t 4 (g}

‘Observing Fig. 6.3, we see thot:

H
o

d(A) = B d (d)
Substttuting this value, in the previous expression, it will

give us the condition so thut, the discharge @, passes tarough

the critical depth, or:

& B
cps 8 = 3 = B
g 4
that we can express:
QZ Ag cos o
—— Formulae 6.3
g 5 ™
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The subindex (c), 1s due to tﬁe foct that Ac and
Hﬂ, are the values of the ared and of the top width when the
depth iz critical,

¥e should observe that, AG as much as Bc’ are

Tunctions of dc, 50 that:

c

Q =71 (d,) or 4, = ' (Q)

If we divide both sides of the formula 6.3, by Az, we

will obtain:

Q Ac cos @
b <,
gﬂn Bc
but:
2
n = Vc and = dmc
ﬁc | Bc
thereforel
fi cCps ©
- mc o
g
or also.
Vﬁ dmﬂ cos &

li

Formula 6.4
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The value of the eritical velocity will be given by:

! cos @

v, =\/§ dmc wv/—uz:ﬂh Formula 6.5

The value of the minimum speciric energy, will be:

dmc cos @
Botn = dc COZ @ + —m——— - c(-J—n Formulg 6.F
-

Formula 8.4 can be expressed in the following woy:

Vi CDS

H

g d S

mc

but the first side i3 the Ffroude number for the critical cﬂnd?-

tions or:
cos &
T eresara——— Formula 6.
NF v, 0 7

If in formula 6.2, we clecr out Q, we will obtaing

e

"
£ q AE

g = e (e =d cos & ) Formula 6.8




s

Equalizing both values, we obtain that: -

A g°
cos @ { ~——m— +d ) =4d cos & + oA
2 B 2 g A°
2
A X €
co3 O o e
2 B 2 g =
Cr:
Qz cos 6 A’
g . B

that isn't anything more thon the condition for the discharge
@ to pass through the critical depth, |

Therefore, the criticaol depth, con also be defined
as the depth, whose discharge is a maximum for o content of
coastant specific energy. |

The experimental studies mode in relation to o ,
tqdicate that 1t3 value ts comprehended between 1,03 and 1,356,
The value generally itz greater in small conduits and lesser
in bigger conduits of considerable deptih,

¥hen the slope of the conduit is small, the value
of angle ® i3 alseo small and the cos @ may be considered

equal to one, In practice, o slope is considered small if

fan @ is equal or less than 1/10 or the 10%., In this case,
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The gruph representation of the previous formuls, in o

system of axis of rectungular coordinates, fthat has the dis-

~harges o8 abscisas and the depths as ordinates, has the

result of Fig., 6.%.

In effect:

If: P

, @ is zero ond 1fd = 0, @, i3
cos o

wlzo Q0. Therefore, between hoth O vaolues bf_the discharge,

should exist o maximum value, The requirement for this, is

found deriving the expression £.8, in relation to {d}, and

equalizing the derivative to zero. IS this 13 done, this

condition i3z found:

g (A) | d (4)
- A cog & = 2 d cos @
d {(d) d (d)

i
o

If we remember that d (4}/d (d) = B, top width,

the previous expression is reduced to:

2 e B=cos @ (A+2dE)

or.

e = cas @ { + d)

283

but the value of the specific energy is glven by:
o |

QL—

g = d cos @ +
2 g A
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Q=\/3942 (¢ -d)

6.4%,~ SUBCRITICAL, CRITICAL AND SUPERCRITICAL FLOW.~ The water

flows, tn free cendutts, according fto the Froude yuﬁber, are
classified into:
i, = Suberitical flow
2, = Supercritical flow .
3. = Critical flow
In the subcfittcul-fluw, the velocity ¢f clirculation
is infériar to the critical uelﬁcitg, and the depth of |

circulation is greater thon the critical, The Froude Number

is smaller than cos &/ . 3o that:

V<:Vc

In the critical flow, the veloctity of cotrculation
iz equal to the critical and the depth of circulation is

equal to the criticol depth., The Froude Number is equal to




B Wﬂmﬁ%

tan & is egual to 0.01, & = 35", cos & = 0,9%995, which is
practically one.

Iin practice, in many casés, the values of cos & and
of o, are usually taken as one, In these cases the previous

formulas are reduced fto the fellowing:

R

H

(5
+

.
o]

moe

Py
e
vy
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circulotes with o subcritical depth and ot a supercritical
yelocity, Fig. 6.5 (c),
So, the steady and uniform critical flow hoas G
critical slope,

The stecdy and untform suberitical flow has o

subcritical slope,

The steady and uniform suypercritical flow has o

suypercritical slope,

£,6, - CRITICAL DEPTH IN CIRCULAR SECTIONS, - Let us suppose

that the critical section of o flow is represented in Fig,
£.6. We hove seen that the condition to be fulfilled in

the critical section is:

. ,
Qz A7 cos O
9 B, "

But in Chaptar 2, we have seen thati

p® d p® 2d é a
A = cos -1 (1 - 2 ) - —(] - e ) ———(] - y
4 D 2 D D D
d d '




Mﬁwﬂ_ﬁm

cos 8/t , So that:

cos &

<7
It
st
va
(=N
1
=R
0
A
e
|
R

In the supercritical flow, the velocity of circulation
is superior to the critical velocity, oand the depth of clcula-
tion is infertior to the critical depth, The Froude Number

is larger than cos &/ . So that:

V>V

¢ ¢ 29, ' .HF>

6.5.= CRITICAL, SUBCRITICAL AND SUPERCRITICAL SLOPE.= The
critical slope 15 that one which should have the botiom of

a free condutt, for o discharge that can circulate with a
steady uniform flow, ot the critical depth, It ts designated
38 S, Ftg., €.5 {o).

If the slope of the conduli is inferior to the
critical, it is called gubgritical slope, ond the water
circulates with a steady uniform flcw, when if circulotes
with o supercritical depth and at a suberitical velocity.
Fig, 6.5 (b).

| If the slope of the conduilt is superior to the
critical, it is said that the slope i3 supercritical ond

the water, circulates with o stecdy uniform flow, when it
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Making Kc, equal to the second port of the pfsutnus expression,

we will hoave?

pain.

1
1 a ‘
3"‘/2 -~ COB 1(1 - 2 %) -——-(1--—'.')V °(1.._..) 3/

v L& D ’
. 4, a 1%
4 —°( 1 - -5
D IR
therefore. s g  /2_ |
- Q . [cos ©
35/2- Ku

In table 6.1, we gtve the volues of Kc’ for different values
of d_/D. |

If we want the corresponding dischurge o¢ o given
critical depth, the value of Kc is calculated, corresponding
to dc/ﬂ~qnd then the following formuluris applied:

- cos © ~1/2

kg, 0°/°
o

P

It whot we want is the critical depth, we go into

the sable with the wvolue of Kc’ us{ﬁg the formula:

< %
y1/2

Kc =
D5f2 cos &

. ond we look for the corresponding value of dc/D, from where .

dc-tsxcleured.qut.
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If we opply: these two formulas that are genarul,-tﬁ
the critical section ond the obtained values are substituted

in the expression to be fulfilled in the critical sectionm, we

pbtain:
[Ezc VL N L ] CR N
08 - - — {1 -
Q© eos @ L% p 2 =3 Q-5 5 (1=5")
g x H\/# L (1-%)
D D

where we con See that the discharge is a functlon of the

critical depth.f

The above expression can bhe mri%ten:

e a, 1 ga, AJE a3/
1/2 [—-— sos1(1-2 =8) - = (1-—8)'\[ <% -*)]
?75 _[ cos B] 51/2 o D 2 D D D -
o,

T a V4
%y
D D
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EQUIVALENT RECTANGULAR SECTION.- Let Us suppose thet two
sections of free conduits, one rectoangular and the other
circular, are equtﬁulents from the critical point of view,
Fig., 6.9.  Or, let us suppose that the same discharge ctreculates

on both sectiuns; and let us find the relation between buih

critical depths.

If we apply the conditional, to obtain the criticol

depth, to both sections, we obtain:

Fot the rectongular:

2 ,3 2 "oos O
j_.-.‘_"-' cos & i.nzazr———g si B = D
£ qu L € “

Q° A2 cos 6

- ce
€ Boe ™
or also: 13
’ d l 24 d 4
2 cosl(1-2 ooy _ 2 (9. 2%0y4 [ Tec (3 Tes,
o8
Q° oce @ 5L D 2 D D D )
= ‘

15 we equal toth sides of the final ekpresstnns Jor both

sections, we obftain:
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HET-L

A0 0t P 0% ] 0% } M| D8

o 5] S B 5 84
y 0731 10188 (1170 18471 .
| 207y o008 211 pias

S0 | NAS |1.000 LO4S [1.088 ;1.141

iy

1.30¢ [Lade ‘uu 1380 [1.818 [1.474 f1.
1977 |2041 (2.108 [9.172 [3.200 [3307
1008 2741 j2.310 |2.098 Fm 2.001

5008 [5.008 [3.708 [3.8008 QA.9)4 [4.O0M
470 |4.87 8.08 [5.37 [6.53 (M) -]

ehuak Abbib

Table 6.1 - To determine the discharge of o circulor
conduit portially full, when the circulation
13 nt_tha &rtttcul depth-when the discharge
is already krnown,
Another way to obtoin the critical depth 13 by usting
the graph of Fig. 6.7. There, tf'WE'hﬁuw the volue of the

abhscizsa:
< 1/2
g o, /

p5/2 cos ©

Lk ol

and the value of the correspondent ordinate, dc/ﬁ, e

&

can obtdin the value of dc.*

The critical depth also con be obtalned, using
the nomogram of Fig. 6.,8. This nomogram caen be used, also,
to calculate the criticol depth, for a given dtschqrgé

that circulates by a rectangular free condutt,

6.7 - CRITICAL DEFPTH IN CIRCULAR SECTIONS , BY MEANS OF THE

e T e, e e e e W T ¥ Harrairii . :

.
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2. Knowing the value of 2 &cr/n in the graph of

Fig. 6.10, we determine the corresponding value of dcn/dcr
»

which we will designate as E.

3., We determine dﬂc with the expression:

boc = F 8y



or also:

what can be writften in e Fcllosing waoyl

The previous equation has unly rwn_purdmeturs wilthout dimension:

ey | dcc'

D i Bgn

In Flg, 6.10, i3 represented o graph that establighes
the relation between them,

To determine the criticol depth of o dischorge @, thbt
circulates through o circulor conduit with diometer D, we moy
procede in the followlng way:

!, The critical depth for discharge @, ts
détermlned 17 Lt would circulate by o rectangular free condutitl

of width D, ond the value of the 2 dcr/B relation is coalculated.

; : : 4 3 _ - . 7 .! oy w——-ﬂ. -
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